



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求递推数列通项公式的常用方法 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为中学中所研究的等差或等比数列,下面就求递推数列通向公式的常用方法举例一二,供参考:一 公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有,等差数列或等比数列的通项公式。例一 已知无穷数列的前项和为,并且,求的通项公式?【解析】: , , ,又, .反思:利用相关数列与的关系:,与提设条件,建立递推关系,是本题求解的关键.跟踪训练1.已知数列的前项和,满足关系.试证数列是等比数列.二 归纳法:由数列前几项用不完全归纳猜测出数列的通项公式,再利用数学归纳法证明其正确性,这种方法叫归纳法.例二 已知数列中,求数列的通项公式.【解析】:,猜测,再用数学归纳法证明.(略)反思:用归纳法求递推数列,首先要熟悉一般数列的通项公式,再就是一定要用数学归纳法证明其正确性.跟踪训练2.设是正数组成的数列,其前项和为,并且对于所有自然数,与1的等差中项等于与1的等比中项,求数列的通项公式.三 累加法:利用求通项公式的方法称为累加法。累加法是求型如的递推数列通项公式的基本方法(可求前项和).例三 已知无穷数列的的通项公式是,若数列满足,求数列的通项公式.【解析】:,=1+=.反思:用累加法求通项公式的关键是将递推公式变形为.跟踪训练3.已知,求数列通项公式.四 累乘法:利用恒等式求通项公式的方法称为累乘法,累乘法是求型如: 的递推数列通项公式的基本方法(数列可求前项积).例四 已知,求数列通项公式.【解析】:,又有=1=,当时,满足,.反思: 用累乘法求通项公式的关键是将递推公式变形为.跟踪训练4.已知数列满足,.则的通项公式是.五 构造新数列: 将递推公式(为常数,)通过与原递推公式恒等变成的方法叫构造新数列.例五 已知数列中, ,求的通项公式.【解析】:利用,求得,是首项为,公比为2的等比数列,即,反思:.构造新数列的实质是通过来构造一个我们所熟知的等差或等比数列.跟踪训练5.已知数列中, ,求数列的通项公式.六 倒数变换:将递推数列,取倒数变成 的形式的方法叫倒数变换.例六 已知数列中, ,求数列的通项公式.【解析】:将取倒数得: ,是以为首项,公差为2的等差数列. ,.反思:倒数变换有两个要点需要注意:一是取倒数.二是一定要注意新数列的首项,公差或公比变化了.跟踪训练6.已知数列中, ,求数列的通项公式.小结:求递推数列的通项公式的方法很多,以上只是提供了几种常见的方法,如果我们想在求递推数列中游刃有余,需要在平时的练习中多观察,多思考,还要不断的总结经验甚至教训.参考答案:1. 证明:由已知可得:,当时,时,满足上式. 的通项公式,时为常数,所以为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小班国庆节题目及答案
- 向善而行文章题目及答案
- 线段讨论题题目及答案
- 现场模拟试讲题目及答案
- 2024人教版七年级生物下册期末复习知识点提纲填空版(无答案)
- 2025年解除商业店铺租赁合同模板
- 2025年中医药法知识考核试题
- 物业保洁培训考试及答案
- 营销高管培训课件
- 营销知识培训效果课件
- 2025年秋数学(新)人教版三年级上课件:第1课时 几分之一
- 公司项目谋划管理办法
- 2025年职业指导师考试试卷:职业指导师专业能力
- 小学英语人教版四年级下册 巩固强化练(含答案)
- 防暴器材使用管理办法
- 2025-2026学年粤教粤科版(2024)小学科学二年级上册(全册)教学设计(附目录)
- 钢梁步履式顶推技术规范
- 新建寿县生态陵园(殡仪馆和公墓)规划选址论证、可研报告编制以及初步设
- 岗前安全培训课件
- 2025年山东高考历史试卷真题讲评及备考策略指导(课件)
- 学前儿童融合教育
评论
0/150
提交评论