φ20-φ90高精度棒材矫直机设计【5张CAD图纸与说明书全套资料】
收藏
资源目录
压缩包内文档预览:(预览前20页/共45页)
编号:49675473
类型:共享资源
大小:1.44MB
格式:RAR
上传时间:2020-02-15
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
5张CAD图纸与说明书全套资料
20
90
高精度
矫直机
设计
CAD
图纸
说明书
全套
资料
- 资源描述:
-
【温馨提示】====设计包含CAD图纸 和 DOC文档,均可以在线预览,所见即所得,,dwg后缀的文件为CAD图,超高清,可编辑,无任何水印,,充值下载得到【资源目录】里展示的所有文件======课题带三维,则表示文件里包含三维源文件,由于三维组成零件数量较多,为保证预览的简洁性,店家将三维文件夹进行了打包。三维预览图,均为店主电脑打开软件进行截图的,保证能够打开,下载后解压即可。======详情可咨询QQ:414951605
- 内容简介:
-
重庆科技学院毕业设计(论文)开题报告设计题目2090高精度棒材矫直机设计学生姓名 刘 川 学 号 2004440118专 业 机械设计制造及其自动化 院 (系) 机 械 工 程 学 院 指导教师 陈 祥 伟 年 月 日开题报告填写要求1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作开始后2周内完成,经指导教师签署意见及教研室审查后生效;2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网址上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3.学生查阅资料的参考文献理工类不得少于10篇,其它不少于12篇(不包括辞典、手册);4.“本课题的目的及意义,国内外研究现状分析”至少1000字,其余内容至少1000字。毕业设计(论文)开题报告1.本课题的目的及意义,国内外研究现状分析 (1)棒材矫直机设计的目的和意义金属棒材在轧制、加热、运输等各种加工过程中常常产生不同程度的弯曲、歪扭等塑性变形或内部残余应力;目前冶金市场上对金属棒材的成品精度要求也越来越高,因此轧制矫直设备在工厂中应用越来越普遍,对矫直设备的自动控制要求也越来越高。(2)棒材矫直机国内外研究现状分析长期以来,压力矫直机因弯曲由人工检测,压弯量人为设定不够准确,全过程都靠手工操作,效率低,矫直精度全凭操作者经验来决定等缺点,一直作为一种补充矫直设备来使用。压力矫直必须检测工件的原始弯曲,测量弯曲量、确定最佳矫直点、设定压弯量。由于缺少可靠的检测手段和认识上的一些人为因素,以前这些工作只能靠人工来完成。因此以前的压力矫直机有以下缺点:弯曲人工检测、压弯量人工设定不够准确,效率低,矫直精度全凭操作者经验来决定,降低了生产效率。随着机械工业和国民经济各部门生产的发展和技术进步,对钢材产品质量的要求越来越高。矫直是轧制生产中不可缺少的重要工序,对于轧件来讲,矫直主要用于解决轧件的弯曲、歪扭等塑性变形或内部残余应力。矫直机的结构参数和力能参数是设计和使用矫直机的主要依据,参数的合理与否,直接影响矫直机的使用性能。相对一定的矫直条件和矫直精度要求,存在着最少弯曲次数允许值,虽然增加弯曲次数可提高矫直精度,但机体的尺寸、重量、加工、维护及能耗等都相应有所增加,因此有必要确定矫直轧件所需的最佳弯曲次数。国际上运用计算机、液压控制技术,实现了压力矫直的自动化、智能化,使压力矫直机得以融入连铸或锻造生产线,成为在线设备。使生产效率得到了大大的提高。二辊矫直机是斜辊矫直机的一种, 但其工作原理在斜辊矫直机中独具特点,如图1 所示: 在多斜辊矫直机出现前后,人们创造出了二斜辊矫直机,它的矫直功能来自于辊形的凹凸变化,它是以矫直短圆材的独特性能而受到重视,并填补了这种矫直机的空白, 它又以能矫直圆材两端和能压光圆材表面( 辊子斜角很小时)而得到不断发展。图1二辊矫直机示意图二辊棒材矫直机由于矫直精度高、造价低,可矫直轻中型棒材、管材,在治金工业和机械制造业中有广泛应用。现在在我国国内中信重型机械公司洛阳矿山厂、无锡西漳液压机械厂等很多厂家。而国外如英国的布朗克斯公司、维柯公司及罗伯运(R0一BETSON)公司;法国的I)MS公司及艾梯巴尔(ErllBAR)公司:德国的索林坚(sOLINGEN)公司和斯兰特(sIAN7、)公司;美国的萨顿(sLTION)公司;日本的川副机械公司;前苏联的基洛夫机床广等。可以生产这种斜二辊辊矫直机。毕业设计(论文)开题报告2.本课题的任务、重点内容、实现途径 设计(论文)的主要内容: (一)设计参数:1. 矫直棒材规格:20902. 矫直棒材材料:合结钢、不锈钢(s=1200N/mm2)3.棒材原始曲率:0.4%(mm/m)4.矫直后直度:0.05%(mm/m)5.棒材原始表面:Ra3.26.棒材矫直后表面:Ra0.87.最大矫直速度:330m/min8.最大矫直力:300KN9.采用液压过载保护 10.采用循环润滑与循环冷却11.自动上下料(二)整机设计、润滑系统选型设计、整机设备安装与维护方案制定设计(论文)任务要求:滚光矫直机力能参数计算与结构设计、润滑系统选型设计。具体要求如下:1.进行相关资料查阅,完成文献综述,英文资料翻译,完成开题报告2.进行总体方案论证及选型,主要理论参数计算与优化3.采用计算机绘图完成总机装配图、辊系装配图4.完成15000字左右的设计说明书5.答辩(三)实现途径 对于如何实现棒材的直度和滚光表面:以前人们采用平行辊矫直机矫直管、棒等圆形断面条材,但是平行辊矫直机在矫直管、棒等圆形断面条材时存在两个致命的缺点:第一:平行辊矫直机只能矫直圆材垂直于辊轴的纵向剖面上的弯曲。若矫直其他各方位的纵向剖面的弯曲常需要进行多次的变方位的矫三过程;第二,圆材在矫直过程中容易产生自转现象,不仅达不到矫直目的,反而要产生严重的螺旋形弯曲(俗称麻花弯),使产品报废。究其原因,前者是圆材弯曲具有全方位的特性,在矫直某一纵向剖面时对与其垂直的纵向剖面无矫直能力,即对侧向弯曲不能矫直。后者乃系偏心压弯条件下辊子对圆材压力将构成对圆材轴向转矩,当这种转矩超过辊面与圆材之间的摩擦转矩时,圆材便三立生自转。而自转一旦产生便将连续不断。由自转形成的螺旋弯曲也将越转越严重。所以我们这里采用二辊棒材矫直机矫直,工作辊的上辊为凹辊,下辊为凸辊,上下辊均为传动辊,辊子的角度和高度调整是电动的,辊子两侧有导板,导板用液压缸打开和锁紧。利用二辊的弧度、刚度以及两辊之间的倾角来控制棒材轧件,来达到矫直和滚光的目的。对于如何实现液压过载保护及其润滑:液压系统是控制工作辊不可缺少的重要组成部分。它不仅为执行元件提供动力,同时也控制各执行元件的动作,使各执行元件按设定的程序运行。由于液压系统在国内已很成熟,在此我们采用液压控制系统来控制工作辊以提高矫直精度,同时利用液压系统实现过载保护:1) 主控系统采用插装式逻辑锥阀控制,并通过功能元件来调节主阀芯的开启时间及速度,以满足大流量、快速、无冲击、噪音小的要求。为了保证控制阀的质量及其可靠性,先导阀等采用力士乐的产品;2) 主缸、侧缸均有高压卸荷功能,减小液压冲击,保证压机运行平稳,振动小。3) 为防止压机工作过程中压力失控或考虑某些机械零部件的安全性,该系统采用压力传感器及溢流阀联合使用, 对主、侧缸进行限压保护。润滑采用循环润滑与循环冷却。对于如何实现自动上下料:1 上料机构:上料机构由升降式台架,对齐辊道,步进运输机组成。步进运输机由油缸驱动升降;电机减速机驱动齿轮齿条副平移,电机变频控制,可以实现棒料的平稳、快速、无冲击运输。可以提高设备运行的稳定性,延长设备使用寿命。2 送料小车:送料小车可以夹持棒料,实现棒料前进、后退、旋转等动作。配合检测系统可以对棒料实施三维扫描。棒料夹持采用三爪自动夹盘装置,旋转由电机减速机驱动齿轮副带动卡盘旋转,小车行走由电机减速机驱动链轮链条牵动小车运动。3 出料系统:出料系统由步进运输机、出料辊道组成。步进运输机与上料机构相同。出料辊采用弹性浮动辊。可以防止矫直时辊道因承压而被压坏。3. 预计可能遇到的困难,提出解决问题的方法和措施 (1) 预计可能遇到的困难:1)矫直的轧件可能达不到题目的要求精度问题;2)液压传动系统的设计、高温恶劣环境下液压传动系统的泄露问题;3) 参数的计算过于复杂以及润滑、自动上下料等问题 。(2) 提出解决问题的方法和措施1)可以提高工作辊的刚度、调整工作辊的倾角、调整工作辊的弧度;2)对液压系统进行优化设计,合理选择液压油,做好密封和日常维护工作,防止或减少液压油的泄露;3)对于参数设计采用计算机辅助建立数学模型、采用高质量润滑油和运用液压系统控制运输机,出料轨道。毕业设计(论文)开题报告4.完成本课题所需的工作条件(如工具书、计算机、实验、调研等)及解决办法 (一)工具书1崔甫矫之技术与矫直原理:冶金工业出版社,2005年4月(第二版) 2 濮良贵机械设计:高等教育出版社,2001年6月(第七版)3 刘鸿文材料力学 : 高等教育出版社,2004年1月(第四版)4 刘建臣 AutoCAD2004中文版 :国防工业出版社,2004年1月5 邹家祥轧钢机械:冶金工业出版社,2000年2月(第三版)6 王章忠机械工程材料:机械工业出版社,2006年1月(第一版)7 李坤机械维护与安装:化学工业出版社,2004年2月8 刘延俊液压与气压传动 :机械工业出版社,2007年2月(第二版)9 王春行液压控制系统:机械工业出版社,2007年8月(第一版)10 罗振才冶金机械设计方法:冶金工业出版社,1993年4月11 唐金松简明机械设计手册:上海科技出版社,1992年6月12摩檫摩损与润滑 :石油工业出版社13 石洪卫冶金管理杂志 :冶金管理杂志出版社,2008年1月14 汪学瑶特殊钢杂志:特殊钢杂志出版社,2008年2月15 李茂基.轧钢机械M北京:冶金工业出版社,1998(二)解决方法:1.计算机:运用计算机画CAD图、处理一些相关文献资料以及计算一些相关数。2.工具书:首先是老师为我提供了很多关于轧钢机械、矫直与矫直原理等方面的书籍。在此之外,还可以通过在学校图书馆以及通过网络搜索出相关的资料,丰富自己的理论知识。为自己的课题研究提供所需要的信息。5.进度计划(或工作方案分析)2月24日3月07日:查阅相关资料,确定设计思路,完成开题报告和文献综述。3月08日3月14日:完成相关文献的外文翻译。3月15日3月31日:完成本次课题研究的相关设计计算。4月01日4月30日:完成所要求的零件图、装配图。5月01日5月31日:进一步完善本次课题的其他工作,准备答辩。毕业设计(论文)开题报告指导教师意见:(对本课题的深度、广度及工作量的意见和对设计结果的预测) 指导教师签名 年 月 日教研室审查意见: 教研室负责人签名 年 月 日重庆科技学院学生毕业设计(论文)文 献 综 述题目 20 90 高 精 度 棒 材 矫 直 机 学生姓名 刘川 学号 2004440118 院(系) 机 械 工 程 学 院 指导教师签字 学生成绩(百分制) 教 务 处 制文献综述要求1.文献综述是要求学生对所进行的课题搜集大量情报资料后综合分析而写出的一种学术论文。其特点“综”是要求对文献资料进行综合分析、归纳整理,使材料更加精练明确、更有逻辑层次;“述”就是要求对综合整理后的文献进行比较专门的、全面的、深入的、系统的描述和评价。2.文献综述中引用的中外文资料,内容必须与课题或专业方向紧密相关,理工类不得少于10篇,其它不少于12篇。3.文献综述不少于2000字,按规定格式用钢笔工整书写。其所附注释、参考文献格式要求同正文。文献综述的评阅评阅要求:应根据学校“文献综述要求”,对学生的文献综述内容的相关性、阅读数量以及综述的文字表述情况等作具体的评价。指导教师的评语:指导教师签名 年 月 日文献综述摘要:本文对钢材矫直工艺及工作原理,斜辊矫直机的工作原理、特点、结构等进行了介绍,同时对二辊棒材矫直机力能参数的计算进行了分析,提出了本次设计二辊棒材矫直机的基本思路。关键词:棒材 矫直工艺 二辊棒材矫直机 矫直力能参数前言金属棒材在轧制、加热、运输等各种加工过程中常常产生不同程度的弯曲、歪扭等塑性变形或内部残余应力;目前冶金市场上对金属棒材的成品精度要求也越来越高,因此轧制矫直设备在工厂中应用越来越普遍,对矫直设备的自动控制要求也越来越高。在多辊棒材矫直机中,其矫直辊由多个辊子组成;设备在矫直过程中由于其棒材的弯曲程度不同;设备的矫直辊要频繁地进行压下及转角的调整(以下简称调整)。在国内大多数同类设备中,其调整靠工人依据设备上的标尺,手动控制进行。对于多辊设备调整起来就非常的麻烦,所需时间较长,为了提高生产率,必须提高设备的自动化程度,辊系的自动调整成为必然趋势。随着液压控制技术的发展,运用三维扫描检测技术、跟随式检测机构、压力矫直专家系统等专有技术,实现了压力矫直的自动化、智能化,使压力矫直机得以融入连铸或锻造生产线,成为在线设备。使生产效率有了很大的提高。矫直原理及矫直机分类根据结构特点和工作原理的不同,矫直机可以分为压力矫直机、辊式矫直机、斜辊矫直机、拉伸矫直机和拉弯矫直机等几种基本类型。压力矫直机 :压力矫直机是以曲柄连杆机构驱动的活动压头使轧件产生一次反向弯曲,将轧件矫直的。“矫枉必须过正”就是压力矫直机的基本矫直原理。这种矫直机人工操作繁重、生产效率低,但调整灵活,对于各种局部弯曲状态,都具有矫直的可能性,一般只有用来矫直大型钢梁、钢轨和大直径(大于200300mm)钢管,或用作辊式矫直机的补充矫直。压力矫直机有立式和卧式两种结构。辊式矫直机:辊式矫直机具有两排交错布置的工作辊,弯曲的轧件通过转动的工作辊之间,经过多次反复弯曲得以矫直。轧件能以较高的速度在运动中进行连续矫直,生产效率高,且易于实现机械化和流水生产,辊式矫直机在型钢车间和板带材车间得到广泛的应用。辊式矫直机的一类型很多。其中按上排工作辊的调整方式分,基本上可以归纳为三类:单独调整、平行调整和倾斜调整。斜辊式矫直机:斜辊式矫直机用于矫直管材和圆棒材。这种矫直机的工作辊具有类似双曲线的空间曲线的形状,两排工作辊轴线相互交叉,管棒材在矫直时边旋转边前进,也是利用多次反复弯曲轧件,最终消除各方面的弯曲和端面的椭圆度。这类矫直机的设备重量轻,易于调整和维修,矫直管棒材效果好。其中可以按工作辊数量分类,而本文介绍的二辊矫直机就是其中的一种。拉伸矫直机:主要用于矫直厚度小于0.6mm的薄钢板和有色金属板材、管材、异型材。对于具有中间瓢曲或边缘浪形的板带材,虽有结构复杂的支承辊分段可调的辊式矫直机加以矫直,但矫直效果不理想,这是需采用拉伸矫直方法。拉伸矫直的主要特点是对轧件施加超过材料屈服极限的张力,使之产生弹塑性延伸变形,从而将轧件矫直。拉伸弯曲矫直机:为了提高带材矫直质量,近年来,拉伸弯曲矫直机组得到较大的发展。拉伸弯曲矫直的基本原理是在张力作用下的带材,经过弯曲辊剧烈弯曲时,产生弹塑性延伸,从而三维形状缺陷得以消除。这种矫直机组一般用在连续作业线上,可以矫直各种金属带材(包括高强度极薄带材),也可以用于酸洗机组进行机械破磷,从而提高酸洗速度。此外,在有色金属型材车间尚有扭转式矫直机,用于矫直型材的扭曲变形。二辊棒材矫直机二辊棒材矫直机由于矫直精度高、造价低,可矫直轻中型棒材、管材,在治金工业和机械制造业中有广泛应用。等曲率辊形的二辊机矫直过程数学力学模型比较简明,易于分析。矫直辊是矫直机的关键部件,它一方面决定了矫直的精度、效率,另一方面在很大程度上决定了矫直机的结构及机器制造成本 以往的辊型设计虽以矫直过程的力学分析为基础,但在辊型参效设计中往往采用经验公式,其设计效率较低。等曲率辊子的辊型参数设计主要有四个:辊子直径,辊长,辊子倾角和辊缝曲率。它们对矫直精度的影响关系很复杂,靠经验设计难于求出最优值。优化设计是一种先进的设计方法,它对提高设计质量有很大的帮助。在文献中已建立了矫直过程的力学模型和精度的数学模型,使优化设计成为可能。而二辊棒材矫直机的矫直过程以及压弯方式见图(1)。图1 2辊矫直过程及2种压弯方式二辊矫直机是斜辊矫直机的一种, 但其工作原理在斜辊矫直机中独具特点,如图2 所示: 在多斜辊矫直机出现前后,人们创造出了二斜辊矫直机,它的矫直功能来自于辊形的凹凸变化,它是以矫直短圆材的独特性能而受到重视,并填补了这种矫直机的空白, 它又以能矫直圆材两端和能压光圆材表面( 辊子斜角很小时)而得到不断发展。 图2 二辊棒材矫直机示意图矫直力能参数 主要参数计算: 其基本参数包括矫直力、矫直力矩、辊距t、辊径D、辊数n、辊身长度L和矫直速度v0矫直机基本参数的正确选择对轧件的矫直质量、设备的结构尺寸和功率消耗等都有重要的影响。矫直力的计算由于二辊矫直机辊形有单向弯曲与双向弯曲之分,其矫直力也不同, 而矫直力大小与辊缝的压弯程度密切相关,由于本机型的辊形设计采用单向反弯曲辊形,因此按单向反弯曲辊形来计算矫直力。 辊形各段长度:辊腰段Sd=t,辊腹段Sd=t,辊胸段Sb=t。由于等弯曲率区内的弯矩不变, 它必然由一个外力偶构成工件内部的等弯矩区。首先从图3 上力F3来看,在Sb段内它形成的弯矩是线性递增的。虽然这个弯矩一开始是弹性弯矩,但很快增大为弹塑性弯矩( 弹性段长度可略去不计),新的力偶矩应由F2来形成,而且只在转半周之后就需形成F2Sd /2的力偶矩,以便在下半周内完成M2的等弯矩弯曲。进入到辊腰Sd段时,由于增大弯矩须达到M1值,故需在M2之外再增加一个力偶矩F2Sd /2 值。这种人为的受力模型是与辊形曲线的曲率变化过程基本一致的,是会接近实际受力状态的,于是可以计算图中的各矫直力:图3 二辊矫直机双向反弯辊受力简图确定倾角、辊距t、辊径D、辊数n、辊身长度L、矫直速度v0和电机的驱动功率等参数。结语通过研究二辊矫直机的力能参数,给出了二辊矫直机力能参数的确定方法。通过计算得出了矫直过程中的各部分力能参数,为设计二辊矫直机提供了可借鉴的依据。参考文献1 王海文.轧钢机械设计M北京:机械工业出版社,19832 崔甫.矫直原理与矫直机械M北京:冶金工业出版社,20023 刘志亮.辊式板材矫直机力能参数实验分析J鞍钢技术,1993.44 周开勤.等1机械设计师实用手册M天津:天津科学技术出版社,20035 李茂基.轧钢机械M北京:冶金工业出版社,19986 濮良贵机械设计:高等教育出版社,2001.6(第七版)7 刘鸿文材料力学 : 高等教育出版社,2004.1(第四版)8 刘建臣 AutoCAD2004中文版 :国防工业出版社,2004.19 邹家祥轧钢机械:冶金工业出版社,2000.2(第三版)10 王章忠机械工程材料:机械工业出版社,2006.1(第一版)11 李坤机械维护与安装:化学工业出版社,2004.212 刘延俊液压与气压传动 :机械工业出版社,2007.2(第二版)13 王春行液压控制系统:机械工业出版社,2007.8(第一版)14 罗振才冶金机械设计方法:冶金工业出版社,1993.4重庆科技学院毕业设计(论文)任务书院 (系) 机械学院 专业班级 机械设计制造及其自动化 学生姓名 刘川 学号 指导教师 陈祥伟 职称 高级工程师 题目:2090高精度棒材矫直机设计(任务起止日期 2008年2 月23 日至 2008年6月15 日)教 研 室 主 任 年 月 日院 长(系主任) 年 月 日设计(论文)的主要内容: (一)设计参数:1. 矫直棒材规格:20902. 矫直棒材材料:合结钢、不锈钢(s=1200N/mm2)3.棒材原始曲率:0.4%(mm/m)4.矫直后直度:0.05%(mm/m)5.棒材原始表面:Ra3.26.棒材矫直后表面:Ra0.87.最大矫直速度:330m/min8.最大矫直力:300KN9.采用液压过载保护10.采用循环润滑与循环冷却11.自动上下料(二)整机设计、润滑系统选型设计、整机设备安装与维护方案制定设计(论文)任务要求:滚光矫直机力能参数计算与结构设计、润滑系统选型设计。具体要求如下:1.进行相关资料查阅,完成文献综述,英文资料翻译,完成开题报告2.进行总体方案论证及选型,主要理论参数计算与优化3.采用计算机绘图完成总机装配图、辊系装配图4.完成15000字左右的设计说明书5.答辩主要参考文献(由指导教师指定):1崔甫矫之技术与矫直原理:冶金工业出版社,2005年4月(第二版) 2 濮良贵机械设计:高等教育出版社,2001年6月(第七版)3 刘鸿文材料力学 : 高等教育出版社,2004年1月(第四版)4 刘建臣 AutoCAD2004中文版 :国防工业出版社,2004年1月5 邹家祥轧钢机械:冶金工业出版社,2000年2月(第三版)6 王章忠机械工程材料:机械工业出版社,2006年1月(第一版)7 李坤机械维护与安装:化学工业出版社,2004年2月8 刘延俊液压与气压传动 :机械工业出版社,2007年2月(第二版)9 王春行液压控制系统:机械工业出版社,2007年8月(第一版)10 罗振才冶金机械设计方法:冶金工业出版社,1993年4月11 唐金松简明机械设计手册:上海科技出版社,1992年6月12 摩檫摩损与润滑 :石油工业出版社13 石洪卫冶金管理杂志 :冶金管理杂志出版社,2008年1月14 汪学瑶特殊钢杂志:特殊钢杂志出版社,2008年2月15 李茂基.轧钢机械M北京:冶金工业出版社,1998年同组设计者及分工:无注:该任务书由指导教师填写,在毕业设计开始前一周下达给学生,一式二份,专业教研室、每个学生各一份。其中教研室的一份待学生做完毕业设计(论文)后作为附件装入学生毕业设计(论文)资料中。学生完成毕业设计(论文)工作进度计划表序号毕业设计(论文)工作任务工 作 进 度 安 排 (周)12345678910111213141516171819201资料查阅,学习有关知识,完成文献综述报告2完成外文译文、撰写开题报告3进行调研,开展设计方案论证4进行设计理论参数计算与选择5进行结构初步设计与主要参数验证6确定设计结构,绘制图纸7整理设计资料,撰写说明书8整理提交设计图纸、设计说明书9准备答辩10答辩说明:1.此表由指导教师填写;2.此表每个毕业学生一份,作为毕业设计(论文)检查工作进度之依据;3.进度安排计划请用蓝或黑色横条线在相应位置标出,进度安排实施请用红色横条线在相应位置标出。毕业设计(论文)阶段工作情况检查表时间第一阶段(完成开题报告时)第二阶段第三阶段(参加毕业答辩一周前)内容组织纪律完成任务情况组织纪律完成任务情况组织纪律完成任务情况检查情况教师签字签字 日期 年 月 日签字 日期 年 月 日签字 日期 年 月 日说明:1.此表每个毕业学生一份,由指导教师根据学生具体执行情况如实填写;2.对违纪和不能按时完成任务者,指导教师可根据情节轻重对该生提出警告或不能参加答辩的建议。重庆科技学院毕业设计(论文)题 目 20-90高精度棒材矫直机设计 姓 名_刘 川 _ 学 号_2004440118院(系)机械工程学院 专业班级 机械设计制造及其自动化本科2004级 指导教师_ 职 称_高级工程师评 阅 人_ _ 职 称_ 2008年6月10日注 意 事 项1. 设计(论文)的内容包括:1) 封面(按教务处制定的标准封面格式制作)2) 题名页3) 中文摘要(300字左右)、关键词4) 外文摘要、关键词 5) 目次页(附件不统一编入)6) 论文主体部分:引言(或绪论)、正文、结论、参考文献7) 附录(对论文支持必要时)2. 论文字数要求:设计(论文)字数理工类不少于1.5万字,文科类不少于1.2万字。3. 附件包括:任务书、文献综述、开题报告、外文译文、译文原文(复印件)。4. 文字、图表要求:1) 文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写。2) 工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画。3) 毕业论文须用A4单面打印,论文50页以上的双面打印。4) 图表应绘制于无格子的页面上。5) 软件工程类课题应有程序清单,并提供电子文档。5. 装订顺序1) 设计(论文)2) 附件按照任务书、文献综述、开题报告、外文译文、译文原文(复印件)次序装订3) 教师指导毕业设计(论文)情况记录表4) 其它学生毕业设计(论文)原创性声明本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。毕业设计(论文)作者(签字): 签字日期 年 月 日重庆科技学院本科生毕业设计 目录目 录中文摘要I英文摘要II1 绪 论11.1设计课题背景11.2设计依据11.3矫直设备的发展概况11.4分类及工作原理31.4.1 压力矫直机31.4.2辊式矫直机31.4.3 斜辊式矫直机31.4.4拉伸矫直机31.4.5拉伸弯曲矫直机42 钢材矫直理论12.1“ 矫直”的定义12.2反弯矫直的基本原理13二辊滚光矫直机的工作原理43.1二辊滚光矫直机的简介43.2二辊滚光矫直机的工作原理43.3设计二辊滚光矫直机所涉及到的主要参数103.4国内外现在生产这种矫直机的厂家114二辊滚光矫直机力能参数计算124.1矫直力的计算124.1.1求导程t124.1.2求弹性极限弯矩Mmax134.1.3求倾角:134.1.4轴承承受力的总和144.2 二辊滚光矫直机功率计算144.2.1轴承的消耗功率144.2.2滑动摩擦的消耗功率144.2.3滚动摩擦的消耗功率144.2.4塑性弯曲变形的消耗功率154.2.5消耗总功率154.3电机驱动功率124.4关于机架、机座及轴承盖的设计155二辊滚光矫直机辊系设计185.1矫直辊的组成185.2.矫直辊材料185.3矫直辊尺寸计算195.4矫直速度计算205.5矫直辊强度计算215.6轴承的寿命校核236二辊滚光矫直机传动装置的选择及液压过载保护256.1二辊滚光矫直机传动装置的选择256.1.1矫直机主传动装置的组成256.1.2矫直机主传动装置类型256.1.3万向连接轴256.1.4联接轴的总体的配置及其平衡装置266.1.5主减速机276.2二辊滚光矫直机的液压过载保护装置287二辊滚光矫直机的安装与维护307.1二辊滚光矫直机的安装307.1.1基础307.1.2设置安装基准307.1.3设置垫板307.1.4矫直机的吊装、找正、找平、找标高317.1.5二次灌浆317.1.6试运转317.2二辊滚光矫直机的维护317.2.1二辊滚光矫直机的维护和修理制度317.2.2二辊滚光矫直机的润滑328总结349致谢3510参考文献36重庆科技学院本科生毕业设计 中文摘要摘 要随着科技的进步,人们对棒材的需求量越来越大、对其精度要求也越来越高,以前人们采用平行辊矫直机矫直管、棒等圆形断面条材,圆材在矫直过程中容易产生自转现象,并且只能矫直圆材垂直于辊轴的纵向剖面上的弯曲。在这种情况下斜二辊矫直机的问世解决了以前平行辊矫直机所解决不了的棒材、管材的矫直问题,在这种情况下,我们对二辊滚光矫直机进行设计。本文重点对钢材矫直工艺及工作原理,斜辊矫直机的工作原理、特点、结构等进行了介绍,同时对二辊棒材矫直机力能参数的计算进行了分析,提出了本次设计二辊棒材矫直机的基本思路。矫直机的机架、机座、传动等部分设计不属于本次设计的重点,所以在这里只是作了简单的介绍,但是由于时间比较仓促,本文对矫直机的液压压下装置、矫直机的安装与维护没有做出详尽的介绍,限于本人的水平,文中有误漏之出,还请批评指正。关键词:棒材 矫直工艺 二辊棒材矫直机 矫直力能参数1重庆科技学院本科生毕业设计 AbstractABSTRACTWith the advancement of technology, peoples growing demand for the bar, its accuracy is also getting higher and higher, before people parallel roller leveler straightening tubes, rods and other circular cross-section of the build, round-wood in hand Direct the process of rotation is easy to produce, and only straightening roundwood roll axis perpendicular to the longitudinal section on the bend. In this case the ramp roll straightening machine resolved before the advent of parallel roll straightening machine can not be resolved by the bar, pipe straightening of the problem, in this case, we design roll on the roller-straightening machine.The steel straightening process and working principle, ramps roll straightening machine works, characteristics, such as the structure was introduced, while two of the roll bar straightening machine can be calculated parameters of an analysis of the proposed The design of the roll bar leveler of the basic ideas. Straightening machine rack, engine, transmission and other parts of the design are not the focus of this design, so here is a brief introduction, but because of the time hasty comparison, the paper leveler of the hydraulic pressure devices, Straightening machine installation and maintenance have not made detailed introduction, I am limited to the level of error in the text of a leak, also invited criticism correction.Key words: bars;Straightening process;the two roll bar straightening machine;straightening of the power parameters1 绪 论1.1设计课题背景长期以来,矫直机因弯曲由人工检测,压弯量人为设定不够准确,全过程都靠手工操作,效率低,矫直精度全凭操作者经验来决定等缺点,一直作为一种补充矫直设备来使用。所以矫直必须检测工件的原始弯曲,测量弯曲量、确定最佳矫直点、设定压弯量。由于缺少可靠的检测手段和认识上的一些人为因素,以前这些工作只能靠人工来完成。因此以前的矫直机有以下缺点:弯曲人工检测、压弯量人工设定不够准确,效率低,矫直精度全凭操作者经验来决定,降低了生产效率。而且现在人们对棒材的需求量越来越大、对其精度要求也越来越高,在情况下斜二辊矫直机的问世解决了以前平行辊矫直机所解决不了的棒材、管材的矫直精度问题,在这种情况下,我们对二辊滚光矫直机进行设计。The company Severstal completed the successful introduction of new in-line plate-straightening machines (PSMs)on its 2800 and 5000 mills in August 2003 1, 2, 3. The main design features of the machines are as follows: each machine is equipped with hydraulic hold-down mechanisms (to improve the dynamics and accuracy of themachine adjustments and more reliably maintain a constant gap); the machines have mechanisms to individually adjust each work roller with the aid of hydraulic cylinders (thisbroadens the range of straightening regimes that can be realized by providing a measure of control over the changein the curvature of the plate); each work roller is provided with its own adjustable drive (to eliminate rigid kinematic constraints between thespindles); the system of rollers of the PSM is enclosed in cassettes (to facilitate repairs and reduce roller replacement costs); the PSM has a system that can be used to adjust the machine from a nine-roller straightening scheme to a five-roller scheme in which the distance between the rollers is doubled (this is done to widen the range of plate thick-nesses that the machine can accomodate).Thus, the new straightening machine is a sophisticated multi-function system of mechanisms that includes a widerange of hydraulically and electrically driven components controlled by digital and analog signals. The entire complex ofPSM mechanisms can be divided into two functional groups: the main group, which includes the mechanisms that partici-pate directly in the straightening operation (the hold-down mechanisms, the mechanisms that individually adjust the rollers,the mechanisms that adjust the components for different straightening regimes, the mechanism that moves the top roller ofthe feeder, and the main drive); the auxiliary group (which includes the cassette replacement mechanism, the spindle-lock-ing mechanism, and the equipment that cools the system of rollers). Although the PSM has a large number of mechanisms,the use of modern hydraulic and electric drives has made it possible to almost completely automate the main and auxiliaryoperations performed on the PSM and the units that operate with it.Described below are the features and the automatic control systems for the most important mechanisms of the plate-straightening machine. The operating regimes of those mechanisms are also discussed.The hydraulic hold-down mechanisms (HHMs) of the sheet-straightening machine function in two main regimes:the adjustment regime; the regime in which the specified positions are maintained. There are certain requirements for thecontrol system and certain efficiency criteria for each regime.In the adjustment regime, the control system for the hydraulic hold-down mechanisms must do the following: synchronize the movements of the hydraulic cylinders and keep the angular deeflection within prescribed limits; maximize speed in adjusting the machine for a new plate size; maintain a high degree of accuracy in positioning the mechanisms;Metallurgist, Vol. 48, Nos. 78, 2004AUTOMATING THE CONTROL OF MODERNEQUIPMENT FOR STRAIGHTENING FLAT-ROLLED PRODUCTSYu. N. Belobrov, V. G. Smirnov,A. I. Titarenko, V. A. Perekhodchenko,and I. L. SinelnikovUDC 621.982Novokramatorsk Machine Plant AO. Translated from Metallurg, No. 8, pp. 5156, August, 2004.406The control system has the following requirements when operating in the maintenance regime: stabilize the coordinates of the top cassette and the top roller of the feeder with a high degree of accuracy; minimize the time needed to return the equipment to the prescribed coordinates when deviations occur (such asdue to the force exerted by a plate being straightened).Need for synchronization. Experience in operating the plate-straightening machine in plate shop No. 3 at Severstalhas shown that the most problematic factor in adjusting the machine is the nonuniformity of the forces applied to the hydrauliccylinders. This nonuniformity is due to the asymmetric distribution of the masses of the moving parts of the PSM (in par-ticular, the effect of the weight of the spindle assembly). Displacement of the “hydraulic zero point” relative to the “electri-cal zero point” in the servo valves is also a contributing factor.*The latter reason is more significant, the smaller the volumeof the hydraulic cylinder. Thus, the HHM of the top roller of the feeder is the most sensitive to drift of the zero point.There are also other factors that affect the dynamism, simultaneousness, and synchronism of the operation of thehold-down mechanisms: differentiation of the frictional forces on parts of the hydraulic cylinders due to different combinations of devia-tions in the dimensions of the mated parts, despite the narrow tolerances; differences in the “springing” characteristics and the indices characterizing the inertia of the hydraulic supply chan-nels (due to differences in the lengths of the pipes leading from the servo valves to the hydraulic cylinders).Thus, since the PSM is not equipped with devices to mechanically synchronize the operation of the cylinders, thetransmission of signals of the same amplitude to the inputs of the servo valves inevitably results in a speed difference that canseriously damage the mechanisms.To minimize and eliminate the effects of the above-mentioned factors, we developed an algorithm for electrical syn-chronization of the hold-down mechanisms.The HHM of the top cassette,composed of four hold-down cylinders and four balancing cylinders,is designed to ensuremobile adjustment of the machine to set the required size of straightening gap (in accordance with the thickness of the plate) andmaintain that gap with a specified accuracy in the presence and absence of a load on the housings from the straightening force.The hydraulic system of the hold-down mechanism is designed in such a way that only one chamber of the hydraulic cylindersis used as the working chamber. The second chamber is always connected to the discharge channel. The top cassette is loweredwhen the balancing forces are overcome by the hold-down cylinders. The cassette is raised only by the action of the balancingcylinders. This arrangement has made it possible to eliminate gaps in the positioning of the equipment.407Fig. 1. Block diagram of the control system of the hydraulic cylinder.* The hydraulic zero point is the position that the slide valve occupies when it covers the delivery and discharge mains. Theelectrical zero point is the control signal that should move the valve to the hydraulic zero point. These points should ide-ally coincide, but in actual servo valves with zero overlap there is always a certain amount of displacement that results inleakage of the hydraulic fluid.The HHM of the top roller of the feeder consists of two hydraulic cylinders. Hydraulic fluid is fed into the plungerchamber when the roller is to be lowered and is fed into the rod chamber when it is to be raised.Control Principles. Individual circuits have been provided (Fig. 1) to control the hydraulic cylinders of the hold-down mechanisms. The control signal (Xctl) sent to the input of the servo valve is formed by a proportional-integral (PI) con-troller (to improve the sensitivity of the system, we chose to use valves with “zero” overlap). The signal sent to the input ofthe controller (the error signal Xerr) is formed as the difference between the control-point signal for position (Xcpt) and thefeedback signal (Xf.b). The latter signal is received from the linear displacement gage (G) of the given hydraulic cylinder.The gages of the HHM for the top cassette are built into the balancing hydraulic cylinders (HCs). The cylinders areinstalled in such a way that their movements can be considered to be equal to the displacements of the corresponding cylin-der rods, with allowance for certain coefficients. The gages in the HHM for the top roller of the feeder are incorporateddirectly into the hold-down cylinders.The integral part of the controller is activated only during the final adjustment stage and during stabilization of theprescribed coordinate. When the displacements exceed a certain threshold value, the functions of the PI controller are takenover by a proportional (P) controller with the transfer function W(s) = k. Thus, Xctl(t) = kXerr(t).When there are significant differences between the displacements of the working rollers, the difference (error)between the control point and the feedback signal from the linear displacement gage reaches values great enough so thatthe output signal which controls the operation of the servo valve reaches the saturation zone. In this case, further regu-lation of the displacement rate and, thus synchronization of the movements of the cylinders becomes impossible as longas the error exceeds the value at which Xctlis greater than the boundary value for the saturation zone (Xsat). The limit-ing error the largest error for which Xctldoes not reach saturation is inversely proportional to the gain of the con-troller k: Xerr Xsat/k.Solving the given problem by decreasing k leads to a loss of speed in the adjustment of the PSM and a decreasein control accuracy during the straightening operation. Thus, to keep the control signal from reaching the saturation zonewhen there are substantial displacements, the system was designed so that the input of the controller is fed not the actualrequired value (Xrq) but an increment (X) of a magnitude such that the condition kX Xsatis satisfied. The control pointis increased by the amount X after the position of the cylinder has been changed by the amount corresponding to the incre-ment having the largest lag relative to the cylinders direction of motion. The adjustment of the control point is continueduntil the difference between the required value and the actual position of the mechanism becomes less than the increment:Xrq Xf.b X.Then the input of the controller is fed the value Xcpt, which is equal to the required adjustment: Xcpt= Xrq. Theadjustment is thus completed.Use of the principle of a stepped increase in the control point makes it possible synchronize the movements of thecylinders and set the control point with a high degree of accuracy for almost any ideal repetition factor.Mechanisms for Individual Adjustment of the Working Rollers. The plate-straightening machine is designed sothat each working roller can be moved vertically, which is done by means of a hydraulic cylinder acting in concert with a V-beltdrive. The cylinders are supplied with power from servo valves operated with proportional control. A linear displacement gageis built into each cylinder to obtain a feedback signal on the position of the roller. Since these gages are actually transmitinginformation on the position of the cylinder rods rather than the working rollers themselves,the following conversion is performedto obtain the rollerscoordinates:Xrol= kredXf.b,where kredis the gear ratio of the drive; Xf.bis the position of the cylinder rod measured by the linear displacement trans-ducers.Thus, a position feedback circuit is provided to control the position of each working roller. Figure 1 presents a dia-gram of one of the circuits.The control signals are generated by means of the PI controllere, which has made it possible to achieve a high degreeof accuracy in adjusting the system without sacrificing speed.408The individual drive of the rollers. The above-described design is based on the use of individual ac drives with motorsof different powers fed from frequency converters. Each individual drive offers the following advantages over a group drive: greater reliability thanks to the absence of additional loads on the components of the mechanisms due to differ-ences between the linear velocities of the working rollers and the speed of the plate; the possibility that the machine could continue to operate if one or even several drives malfunction; in this case,the corresponding rollers would be removed from the straightening zone; the possibility that the linear velocities of the rollers could be individually corrected in accordance with the actualspeed of the plate; such a correction could be made either as a preliminary measure (on the basis of measured andcalculated values) or during the straightening operation (on the basis of the data obtained from the frequency con-verters, which employ artificial intelligence).The main drive of the straightening machine rotates nine straightening rollers and two housing rollers. This drivemust be highly reliable in operation, since the fact that the PSM is installed in the mill line means that sizable productionlosses can be incurred if the drive fails to work properly even for a short period of time.The requirements that must be satisfied by the drive are determined by the operational and design features of themachine as a whole: the plate being straightened must create a rigid kinematic coupling between the straightening rollers, the rollers ofthe housing, and the adjacent sections of the roller conveyors; the plate should undergo elongation during the straightening operation as a result of plastic deformation, with theincrements in length being different on each working roller due to the differentiation of the bending radii; this sit-uation leads to a nonuniform increase in the speed of the plate as it moves toward the end of the PSM; it must be possible to use working rollers of different diameters (this being done, for example, due to nonuniformwear or regrinding); the loads on the rollers should be differentiated in accordance with the chosen straightening regime; reverse straightening should be possible.In light of the above factors and the actual operating regimes of the plate-straightening machine being discussedhere, the following requirements can be established for the electric drive: regulation of speed within broad limits, including startup of the motors under load; operation in the reverse regime; a rigid characteristic = (M); high degree of accuracy in maintaining the prescribed speed; fully synchronous operation.The element base. The drive of the rollers was built with the use of asynchronous three-phase motors having a short-circuit rotor. The motors were designed by the German company VEM. They can continue to function under severe over-loads and are reliable in operation.The motors are controlled by SIMOVERT frequency converters made by the German firm Siemens. Their modulardesign facilitates maintenance and repair, and the presence of a built-in microprocessor block makes it possible to executemost of the functions involved in controlling the operation of the drive (maintain the prescribed speed with a high degree ofstability, recalculate the frequency of rotation in accordance with the actual diameters of the rollers, diagnose the conditionof the drive, control the drives operation, and exchange information on the PROFIBUS network).Motors of different powers are used in the system because of the differentiated distribution of the moments betweenthe working rollers. Using different motors has made it possible to significantly reduce the cost of the electrical equipmentand improve the performance characteristics of the machine as a whole.The machine has three main operating regimes: the working regime (semi-automatic and automatic), the transportregime, and the cassette replacement regime.Figure 2 shows a block diagram of the operations connected with realization of the working regime. In the semi-automatic variant of this regime, the operator controls the PSM from a control panel. In this case, the operator can do thefollowing: choose the straightening regime from a database; correct the chosen regime; adjust the regime manually, which409requires that the operator indicate the desired position of the bottom cassette (for five- or nine-roll straightening); adjust thegap between the top and bottom cassettes; set the coordinates for individual adjustment of the working rollers; choose thestraightening speed and direction; generate a command to begin adjusting the machine to the specified regime.The machine is adjusted to the chosen regime automatically. After the adjustment is completed, a signal is sent tothe control panel indicating that the coordinates of the mechanisms have been changed and that the rollers have reached theirprescribed working speeds.In the automatic variant of the working regime, the plate-straigthening machine is adjusted on the basis of data sentthrough a data network from a higher-level system. These data include the following information: the thickness of the plate being straightened; the group of steels (information on the properties of the material); the temperature of the plate at the inlet to the PSM.The PSM is adjusted in several stages: preliminary adjustment based on the plate thickness and steel group, for cold-rolled plates (t = 20C); further adjustment on the basis of data obtained from a pyrometer installed roughly 50 m from the PSM; final adjustment on the basis of data obtained from a pyrometer installed at the entrance to the machine.In the automatic variant, control over the roller conveyors adjacent to the machine is switched over to the controlsystem of the PSM as the next plate approaches the machine. In this case, the plate cannot enter the working zone of themachine until the adjustment is completed.If it is necessary to pass a plate through the machine without straightening it, the machine is changed over to thetransport regime. In this case, the top crossarm and the cassette are elevated a prescribed amount and the speed of the rollersis changed so that it is equal to the speed of the adjacent roller conveyors.The cassette replacement regime is used in the event of breakage of a roller or when it is necessary to regrind theworking and backup rollers. In this case, the operator can control the operation of the auxiliary mechanisms: the spindle-locking mechanism, the roll-out cart, the mechanism that locks the bottom cassette and the cart in position, and the hydrauliccylinder that moves the cart.The mechanisms are fixed in position by means of noncontact transducers.PSM Control System. Control of the plate-straightening machine required the development of a powerful, high-capacity system that could provide the desired control accuracy in combination with rapid operation.410Working regimeSemi-automaticAutomaticStraightening regimeAdjustment regimeStraightening regimeAdjustment regimeNon-reversing straighteningReversing straighteningFive-roll regimeNine-roll regimeFive-roll regimeNine-roll regimeFive-roll regimeNine-roll regimeFig. 2. Block diagram of the working regime of the PSM.The control system that was created is divided into two levels: the base level, and an upper level. The diagnosticsystem was created as a separate system. A second controller was also provided, to control the pump station of the PSM.The base level of the control system employs a SIMATIC S7 industrial programmable controller, while the upperlevel and the diagnostic system were built on the basis of standard computers. The computer used for the upper-level systemalso serves as the control panel for the PSM.The different elements of the control system are linked by two loops of a PROFIBUS network (Fig. 3). The firstloop functions as the communications link between the controller, the upper-level computer, the diagnostics station, and thepump-station controller. The second loop links the PSM controller with the functional elements of the system (the frequen-cy converters, linear displacement gages, and remote input/output module).The functions of the control system were divided between the base level and the upper level on the basis of the fol-lowing principle: the base level was assigned all of the operations that involve receiving data from the sensors installed onthe mechanisms, obtaining information from the automated process control system on the plate being straightened, and gen-erating and transmitting control signals for the executive mechanisms (actuators); the upper level was assigned the functionsof archiving the control points and monitoring the operation of the control panel.The following specific functions are performed by the base level of the automation system: obtaining the assigned straightening parameters (roller speeds, the coordinates of the top crossarm, and the coor-dinates of the rollers relative to the crossarm) from the upper-level system; processing the parameters and sending corresponding control signals to the actuators; obtaining information from the sensors installed on the mechanisms to determine whether or not the PSM is prop-erly set and ready for the straightening operation; obtaining information from the feedback transducers installed on the mechanisms to calculate the control actions; analyzing the readings of the sensors to determine the accuracy of the data;411Ethernet networkUpper-levelcomputer(control panel)DiagnosticsstationPSMcontrollerModules of RM-RMTlinear displacement gagesControl postControllerPump stationRemoteinput-outputmoduleEngine roomFrequency convertersFig. 3. Network structure of the PSM control system. exchanging data with the pump-battery station (PBS) of the PSM and transmitting the stations operating parame-ters to the upper-level system for display; receiving signals from the upper-level system for manual control of the machine and the PBS; obtaining initial data from the upper-level system for automatic correction and transmission of the data in order tomake the appropriate adjustments.The functions of the upper-level automation system are as follows: entering data on the straightening regimes for subsequent selection of the regime and recording that information ina database; manually choosing the straightening regime from the database for the corresponding plate (this is done by the oper-ator); automatically choosing the straightening regime from the database on the basis of information obtained from theupper-level system; manually controlling the machine in the straightening and cassette-replacement regimes; indicating the positions of the mechanisms based on readings from the sensors and the positions of the limit switches; indicating the presence of a plate in the working zone of the PSM; indicating the temperature of the plate measured by the pyrometer; visually representing the straightening regimes and machine adjustments; visually representing the state of the machines
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。