全等三角形复习-图形变换话全等.docx_第1页
全等三角形复习-图形变换话全等.docx_第2页
全等三角形复习-图形变换话全等.docx_第3页
全等三角形复习-图形变换话全等.docx_第4页
全等三角形复习-图形变换话全等.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

息县杨店中学 陈丽全等三角形复习图形变换话全等图形变换话全等教学目标:1.在图形变换(平移、旋转、对称)中感受全等。 2. 在具备图形变换的条件下,会用图形变换解决三角形全等问题教学重难点:利用图形变换解决三角形全等问题。基本知识题组1. 如图,在方格纸中,以AB为一边作ABP,使之与ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A1个 B2个 C3个 D4个(要让学生明白每个符合条件的点P是通过将原三角形作怎样的图形变换而得到的)2.如图,在ABC和DEF中,B=DEF,AB=DE,添加下列一个条件后,仍然不能证明ABCDEF,这个条件是()AA=D BBC=EF CACB=F DAC=DF3.点C是AE的中点,A=ECD,AB=CD,求证:B=D4、如图,四边形ABCD的对角线AC、BD相交于点O,ABOADO,下列结论ACBD;CB=CD;ABCADC;DA=DC,其中正确结论的序号是_.例题解析1.P是线段AB上一点,APC与BPD都是等边三角形,请你判断:AD与BC相等吗?试说明理由。 分析:观察图形发现它们所在的三角形全等,故考虑通过全等来说明。 解:由APC和BPD都是等边三角形可知APPC,BPDP,APCBPD60,所以APCCPDBPDCPD,即APDBPC,所以APDCPB。(SAS),所以ADBC误点剖析实际上,PBC可看作是PDA绕着P点按顺时针方向旋转60得到,由对应点连线段相等,就有ADBC2、如图,点E,F在BC上,BE=CF,AB=DC,B=C求证:A=D中考演练 (2014年河南省) (10分)(1)问题发现如图1,ACB和DCE均为等边三角形,点A,D,E在同一直线上,连接BE填空:AEB的度数为 ;线段AD,BE之间的数量关系为 (2)拓展探究如图2,ACB和DCE均为等腰直角三角形,ACB=DCE=90,点A,D,E在同一直线上,CM为DCE中DE边上的高,连接BE,请判断AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且BPD=90,请直接写出点A到BP的距离考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理专题:综合题;探究型分析:(1)由条件易证ACDBCE,从而得到:AD=BE,ADC=BEC由点A,D,E在同一直线上可求出ADC,从而可以求出AEB的度数(2)仿照(1)中的解法可求出AEB的度数,证出AD=BE;由DCE为等腰直角三角形及CM为DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由BPD=90可得:点P在以BD为直径的圆上显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论然后,添加适当的辅助线,借助于(2)中的结论即可解决问题解答:解:(1)如图1,ACB和DCE均为等边三角形,CA=CB,CD=CE,ACB=DCE=90ACD=BCE在ACD和BCE中,ACDBCEADC=BECDCE为等边三角形,CDE=CED=60点A,D,E在同一直线上,ADC=120BEC=120AEB=BECCED=60故答案为:60ACDBCE,AD=BE故答案为:AD=BE(2)AEB=90,AE=BE+2CM理由:如图2,ACB和DCE均为等腰直角三角形,CA=CB,CD=CE,ACB=DCE=90ACD=BCE在ACD和BCE中,ACDBCEAD=BE,ADC=BECDCE为等腰直角三角形,CDE=CED=45点A,D,E在同一直线上,ADC=135BEC=135AEB=BECCED=90CD=CE,CMDE,DM=MEDCE=90,DM=ME=CMAE=AD+DE=BE+2CM(3)PD=1,点P在以点D为圆心,1为半径的圆上BPD=90,点P在以BD为直径的圆上点P是这两圆的交点当点P在如图3所示位置时,连接PD、PB、PA,作AHBP,垂足为H,过点A作AEAP,交BP于点E,如图3四边形ABCD是正方形,ADB=45AB=AD=DC=BC=,BAD=90BD=2DP=1,BP=A、P、D、B四点共圆,APB=ADB=45PAE是等腰直角三角形又BAD是等腰直角三角形,点B、E、P共线,AHBP,由(2)中的结论可得:BP=2AH+PD=2AH+1AH=当点P在如图3所示位置时,连接PD、PB、PA,作AHBP,垂足为H,过点A作AEAP,交PB的延长线于点E,如图3同理可得:BP=2AHPD=2AH1AH=综上所述:点A到BP的距离为或课后拓展(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论