



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1如图1,平面直角坐标系中,ABC的顶点坐标分别为A(3,0),B(0,3),C(0,1),你能求出三角形ABC的面积吗? 二、有一边与坐标轴平行例2如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.三、三边均不与坐标轴平行例3如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?平面直角坐标系中的面积问题一、已知点的坐标,求图形的面积。1.在平面直角坐标系中,ABC的顶点坐标分别为A(-2,-2),B(0,-1),C(1,1),求ABC的面积。2.在平面直角坐标系中,四边形ABCD的各个顶点的坐标分别为A(-4,-2)B(4,-2)C(2,2)D(-2,3)。求这个四边形的面积。3.在平面直角坐标系中,四边形ABCD 的四个顶点的坐标分别为A(0,2)、B(1,0)、C(6,2)、D(2,4),求四边形ABCD的面积。4.在平面直角坐标系中,ABC的顶点坐标分别为A(1,-1),B(-1,4),C(-3,1),(1)(1)求ABC的面积;(2)将ABC先向下平移2个单位长度,再向右平移3个单位长度,求线段AB扫过的面积。二、已知面积(可以求面积),求点的坐标5.在平面直角坐标系中,A(-5,0),B(3,0),点C在y轴上,且ABC的面积为12, 求点C的坐标。6.已知,点A(-2,0)、B(4,0)、C(2,4)(1)求ABC的面积;(2)设P为x轴上一点,若,试求点P的坐标。三、点的存在性问题(运动性)7.在直角坐标系中,A(-4,0),B(2,0),点C在y轴正半轴上,(1)求点C的坐标;(2)是否存在位于坐标轴上的点P,使得。若存在,请求出P的坐标,若不存在,说明理由。8.在平面直角坐标系中,点A、B的坐标分别为(-1,0),(3,0),现同时将点A、B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B的对应点C、D,连接AC、BD。(1)求点C、D的坐标及四边形ABDC的面积;(2)在y轴上是否存在一点P,连接PA、PB,使,若存在这样的点,求出点P的坐标,若不存在,试说明理由。9.如图,已知长方形ABCO中,边AB=8,BC=4。以O为原点,OAOC所在的直线为y轴和x轴建立直角坐标系。(1)点A的坐标为(0,4),写出B、C两点的坐标;(2)若点P从C点出发,以2单位/秒的速度向CO方向移动(不超过点O),点Q从原点O出发,以1单位/秒的速度向OA方向移动(不超过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年煤矿安全培训考试试题及答案
- 中医外科考试试题及答案
- 2025年劳务现场安全员考试题库及答案
- 2025年航空器材维修员职业资格认证考试试题及答案解析
- 2026版:中国新能源产业未来趋势与角色定位深度分析报告
- 高校培训合同模板(3篇)
- 做月嫂面试题库及答案
- 高速公路PPP施工合同(3篇)
- 高楼搬运合同模板(3篇)
- 高空施工合同协议书文本(3篇)
- 配音课件资源教学课件
- 191118-锂离子电池专业术语英语对照大全
- 《人工智能通识教程》(第2版)教学大纲
- 2024-2025学年浙江省“精诚联盟”10月联考高一年级第一学期数学试题含答案
- 四川省建筑工程资料表格
- 小学生海姆立克急救法
- 第八届全国职工职业技能大赛(网络和信息安全管理员)海南省赛试题库-下(多选、判断题)
- 学习任务十 汽车执行器电路控制与检测 (1)讲解
- 成都麓湖生态城案例详解
- 2024团校考试入团考试题库(含答案)
- 2024年第九届“学宪法 讲宪法”应知应会知识竞赛题库及答案
评论
0/150
提交评论