




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1【解答】(1)直线经过点, 抛物线经过点, 抛物线的解析式为(2)点的横坐标为且在抛物线上 ,当时,以为顶点的四边形是平行四边形 当时,解得:即当或时,四边形是平行四边形 当时,解得:(舍去)即当时,四边形是平行四边形(3)如图,当点在上方且时,作,则 PMFCNF, 又 解得:,(舍去) 。同理可以求得:另外一点为2解:(1)抛物线y=ax2+bx+c经过点A(3,0),B(0,3),C(1,0),抛物线的解析式为y=x22x+3;(2)A(3,0),B(0,3),OA=OB=3,AOB是等腰直角三角形,BAO=45,PFx轴,AEF=9045=45,又PDAB,PDE是等腰直角三角形,PD越大,PDE的周长越大,易得直线AB的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,联立,消掉y得,x2+3x+m3=0,当=3241(m3)=0,即m=时,直线与抛物线只有一个交点,PD最长,此时x=,y=+=,点P(,)时,PDE的周长最大;抛物线y=x22x+3的对称轴为直线x=1,(i)如图1,点M在对称轴上时,过点P作PQ对称轴于Q, 在正方形APMN中,AP=PM,APM=90,APF+FPM=90,QPM+FPM=90,APF=QPM,APFMPQ(AAS),PF=PQ,设点P的横坐标为n(n0),则PQ=1n,即PF=1n,点P的坐标为(n,1n),点P在抛物线y=x22x+3上,n22n+3=1n,整理得,n2+n4=0,解得n1=(舍去),n2=,1n=1=,所以,点P的坐标为(,);(ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q,PAF+FPA=90,PAF+QAN=90,FPA=QAN,又PFA=AQN=90,PA=AN,APFNAQ,PF=AQ,设点P坐标为P(x,x22x+3),则有x22x+3=1(3)=2,解得x=1(不合题意,舍去)或x=1,此时点P坐标为(1,2)综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(,),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(1,2)3解:(1)把x=1,y=0代入y=x22x+c得:1+2+c=0c=3y=x22x3=y=(x1)24顶点坐标为(1,4);(2)如图1,连接CD、CB,过点D作DFy轴于点F,由x22x3=0得x=1或x=3B(3,0)当x=0时,y=x22x3=3C(0,3)OB=OC=3BOC=90,OCB=45,BC=3又DF=CF=1,CFD=90,FCD=45,CD=,BCD=180OCBFCD=90BCD=COA又DCBAOC,CBD=OCA又ACB=CBD+E=OCA+OCB E=OCB=45,(3)如图2,设直线PQ交y轴于N点,交BD于H点,作DGx轴于G点PMA=45,EMH=45,MHE=90,PHB=90,DBG+OPN=90又ONP+OPN=90,DBG=ONP又DGB=PON=90,DGB=PON=90,DGBPON即:=ON=2,N(0,2)设直线PQ的解析式为y=kx+b则解得:y=x2设Q(m,n)且n0,n=m2又Q(m,n)在y=x22x3上,n=m22m3m2=m22m3解得:m=2或m= n=3或n=点Q的坐标为(2,3)或(,)4【答案】解:(1)把代入得,点,为对称轴,.(2)如图1,过点作轴,交轴于点,过点作,交于点,四边形为矩形,四边形为正方形,为等腰直角三角形,设直线的函数解析式为,直线上两点的坐标为,代入求得,直线的函数解析式为.点5解:(1)过点A作AHOB于H,sinAOB=,OA=10,AH=8,OH=6,A点坐标为(6,8),根据题意得:k=48,反比例函数解析式:y=(x0);(2)设OA=a(a0),过点F作FMx轴于M,sinAOB=SAOH=a2,SAOF=12,S平行四边形AOBC=24,F为BC的中点,SOBF=6,BF=a,FBM=AOB,FM=a,BM=a,SBMF=BMFM=aa=a2,SFOM=SOBF+SBMF=6+a2,点A,F都在y=的图象上,SAOH=k,a2=6+a2,a=,OA=,AH=,OH=2,S平行四边形AOBC=OBAH=24,OB=AC=3, C(5,);(3)存在三种情况:当APO=90时,在OA的两侧各有一点P,分别为:P1(, ),P2(, ),当PAO=90时,P3(, )当POA=90时,P4(, )6解:(1)设抛物线C1的顶点式形式y=a(x1)2,(a0),抛物线过点(0,),a(01)2=,解得a=,抛物线C1的解析式为y=(x1)2,一般形式为y=x2x+;(2)解:当m=2时,m2=4,BCx轴,点B、C的纵坐标为4,(x1)2=4,解得x1=5,x2=3,点B(3,4),C(5,4),点A、C关于y轴对称,点A的坐标为(5,4),设抛物线C2的解析式为y=(x1)2h,则(51)2h=4,解得h=5;(3)证明:直线AB与x轴的距离是m2,点B、C的纵坐标为m2,(x1)2=m2,解得x1=1+2m,x2=12m,点C的坐标为(1+2m,m2),又抛物线C1的对称轴为直线x=1,CE=1+2m1=2m,点A、C关于y轴对称,点A的坐标为(12m,m2),AE=ED=1(12m)=2+2m,设抛物线C2的解析式为y=(x1)2h,则(12m1)2h=m2,解得h=2m+1,EF=h+m2=m2+2m+1,tanEDFtanECP=,tanEDFtanECP=7解(1)由题意可知A(0,2),又因为抛物线经过点A,所以有,解得,所以抛物线解析式为,从而得出点B的坐标为(1,1);因为点D是抛物线(h1)的顶点,所以点D的坐标为(h,2h),将(h,2h)代入中,左右两边相等,所以点D在直线l上(2)交点C的纵坐标可以表示为:或由题意知:= ,整理得:,解得,或,h1过点C作CMy轴,垂足为点M,过点D作DEy轴,垂足为点E,过点C作CNDE,垂足为点N,则四边形CMEN是矩形,MCN=90,又ACD=90MCA=DCNACMDCN由题意可知CM=m,AM=,CN=,DN=从而有,由得,解得,又点C在第一象限内,8解:B(b,0),C(0,b4);假设存在这样的点P,使得四边形PCOB的面积等于2b,且PBC是以点P为直角顶点的等腰直角三角形. 设点P坐标(x,y),连接OP, 则S四边形PCOB=SPCO+SPOB=12b4x+12by=2b,x+4y=16. 过P作PDx轴,PEy轴,垂足分别为D、E, PEO=EOD=ODP=90. 四边形PEOD是矩形. EPD=90.PBC是等腰直角三角形,PC=PB,BPC=90.EPC=BPD.PECPDB. PE=PD,即x=y.由x=yx+4y=16 ,解得:x=165y=165 . 由PECPDB得EC=DB,即165-b4=b-165 ,解得b=128252符合题意.点P坐标为(165,165).假设存在这样的点Q,使得QCO、QOA和QAB中的任意两个三角形均相似. QAB=AOQ+AQO,QABAOQ,QABAQO.要使得QOA和QAB相似,只能OAQ=QAB=90,即QAx轴.b2,ABOA. QOAQBA,QOA=AQB,此时OQB =90.由QAx轴知QAy轴,COQ=OQA.要使得QOA和OQC相似,只能OCQ=90或OQC=90.()当OCQ=90时,QOAOQC. AQ=CO=b4 . 由AQ=AQ2=OAAB得:b42=b-1,解得:b=843.b2,b=8+43, 点Q坐标为(1,2+3).()当OQC=90时,QOAOCQ. OQCO=AQQO,即OQ2=AQCO.又OQ2=OAOB. AQCO=OAOB,即b4AQ=1b.解得:AQ=4,b=172符合. 点Q坐标为(1,4).综上可知:存在点Q(1,2+3)或(1,4),使得QCO、QOA和QAB中的任意两个三角形均相似.9解:(1)二次函数的图象与轴交于点A(2,0),B(3,0)两点, ,解得。 。 (2)证明:由(1)得二次函数解析式为。在正比例函数的图象上取一点F,作FHx轴于点H,则 。 连接AC交 的图象于点E,作CK x轴于点K, 点A关于的图象的对称点为C, OE垂直平分AC。 ,OA=2, 。 在RtACK中,。点C 的坐标为。将C 代入,左边=右边,点C在所求的二次函数的图象上。 (3)DBx轴交的图象于点D,B(3,0), 把x=3代入得,即BD=。 在RtACK中, OE垂直平分AC, ,。 假设存在某一时刻,使PE平分APQ,同时QE平分PQC, 则。 , 。 又,。 又,PAEECQ。,即。 整理,得,解得(不合题意,舍去)。 存在时刻,使PE平分APQ,同时QE平分PQC。10解:(1)D(8,0),B点的横坐标为8,代入中,得y=2B点坐标为(8,2)而A、B两点关于原点对称,A(8,2)从而(2)N(0,n),B是CD的中点,A、B、M、E四点均在双曲线上,B(2m,),C(2m,n),E(m,n) S矩形DCNO,SDBO=,SOEN =, S四边形OBCE= S矩形DCNOSDBO SOEN=k由直线及双曲线,得A(4,1),B(4,1),C(4,2),M(2,2)设直线CM的解析式是,由C、M两点在这条直线上, 解得直线CM的解析式是(3)如图,分别作AA1x轴,MM1x轴,垂足分别为A1、M1设A点的横坐标为a,则B点的横坐标为a于是(第10题)yOAxBMQA1PM1同理,11解:(1)C(0,1),OD=OC,D点坐标为(1,0)设直线CD的解析式为y=kx+b(k0),将C(0,1),D(1,0)代入得:,解得:b=1,k=1,直线CD的解析式为:y=x+1(2)设抛物线的解析式为y=a(x2)2+3,将C(0,1)代入得:1=a(2)2+3,解得a=y=(x2)2+3=x2+2x+1(3)证明:由题意可知,ECD=45,OC=OD,且OCOD,OCD为等腰直角三角形,ODC=45,ECD=ODC,CEx轴,则点C、E关于对称轴(直线x=2)对称,点E的坐标为(4,1)如答图所示,设对称轴(直线x=2)与CE交于点F,则F(2,1),ME=CM=QM=2,QME与QMC均为等腰直角三角形,QEC=QCE=45又OCD为等腰直角三角形,ODC=OCD=45,QEC=QCE=ODC=OCD=45,CEQCDO(4)存在如答图所示,作点C关于直线QE的对称点C,作点C关于x轴的对称点C,连接CC,交OD于点F,交QE于点P,则PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,PCF的周长等于线段CC的长度(证明如下:不妨在线段OD上取异于点F的任一点F,在线段QE上取异于点P的任一点P,连接FC,FP,PC由轴对称的性质可知,PCF的周长=FC+FP+PC;而FC+FP+PC是点C,C之间的折线段,由两点之间线段最短可知:FC+FP+PCCC,即PCF的周长大于PCE的周长)如答图所示,连接CE,C,C关于直线QE对称,QCE为等腰直角三角形,QCE为等腰直角三角形,CEC为等腰直角三角形,点C的坐标为(4,5);C,C关于x轴对称,点C的坐标为(1,0)过点C作CNy轴于点N,则NC=4,NC=4+1+1=6,在RtCNC中,由勾股定理得:CC=综上所述,在P点和F点移动过程中,PCF的周长存在最小值,最小值为12解:(1)把点A(3,6)代入y=kx 得y=2xOA=(2)是一个定值,理由如下:如答图1,过点Q作QGy轴于点G,QHx轴于点H当QH与QM重合时,显然QG与QN重合,此时;当QH与QM不重合时,QNQM,QGQH,不妨设点H,G分别在x、y轴的正半轴上,MQH=GQN,又QHM=QGN=90QHMQGN,当点P、Q在抛物线和直线上不同位置时,同理可得 (3)如答图2,延长AB交x轴于点F,过点F作FCOA于点C,过点A作ARx轴于点R,AOD=BAE,AF=OF,OC=AC=OA= ARO=FCO=90,AOR=FOC,AORFOC,OF=,点F(,0),设点B(x,),过点B作BKAR于点K,则AKBARF,即,解得x1=6,x2=3(舍去),点B(6,2),BK=63=3,AK=62=4,AB=5 (3)在ABE与OED中BAE=BED,ABE+AEB=DEO+AEB,ABE=DEO,BAE=EOD,ABEOED设OE=x,则AE=x (),由ABEOED得,()顶点为(,)如答图3,当时,OE=x=,此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个当时,E点只有1个,当时,E点有2个13解:(1)当x=2时,y=(2)k+2k+4=4直线AB:y=kx+2k+4必经过定点(2,4)点C的坐标为(2,4)(2)k=,直线的解析式为y=x+3联立,解得:或点A的坐标为(3,),点B的坐标为(2,2)过点P作PQy轴,交AB于点Q,过点A作AMPQ,垂足为M,过点B作BNPQ,垂足为N,如图1所示设点P的横坐标为a,则点Q的横坐标为ayP=a2,yQ=a+3点P在直线AB下方,PQ=yQyP=a+3a2AM+NB=a(3)+2a=5SAPB=SAPQ+SBPQ=PQAM+PQBN=PQ(AM+BN)=(a+3a2)5=5整理得:a2+a2=0解得:a1=2,a2=1当a=2时,yP=(2)2=2此时点P的坐标为(2,2)当a=1时,yP=12=此时点P的坐标为(1,)符合要求的点P的坐标为(2,2)或(1,)(3)过点D作x轴的平行线EF,作AEEF,垂足为E,作BFEF,垂足为F,如图2AEEF,BFEF,AED=BFD=90ADB=90,ADE=90BDF=DBFAED=BFD,ADE=DBF,AEDDFB设点A、B、D的横坐标分别为m、n、t,则点A、B、D的纵坐标分别为m2、n2、t2AE=yAyE=m2t2BF=yByF=n2t2ED=xDxE=tm,DF=xFxD=nt,=化简得:mn+(m+n)t+t2+4=0点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,m、n是方程kx+2k+4=x2即x22kx4k8=0两根m+n=2k,mn=4k84k8+2kt+t2+4=0,即t2+2kt4k4=0即(t2)(t+2k+2)=0t1=2,t2=2k2(舍)定点D的坐标为(2,2)过点D作x轴的平行线DG,过点C作CGDG,垂足为G,如图3所示点C(2,4),点D(2,2),CG=42=2,DG=2(2)=4CGDG,DC=2过点D作DHAB,垂足为H,如图3所示,DHDCDH2当DH与DC重合即DCAB时,点D到直线AB的距离最大,最大值为2点D到直线AB的最大距离为214解:(1)SPAB=SPAO=xy=6=3;(2)如图1,四边形BQNC是菱形,BQ=BC=NQ,BQC=NQC,ABBQ,C是AQ的中点,BC=CQ=AQ,BQC=60,BAQ=30,在ABQ和ANQ中,ABQANQ,BAQ=NAQ30,BAO=30,S四边形BQNC=2,BQ=2,AB=BQ=2,OA=AB=3,又P点在反比例函数y=的图象上,P点坐标为(3,2);(3)OB=1,OA=3,AB=,AOBDBA,=,BD=3,如图2,当点Q在线段BD上,ABBD,C为AQ的中点,BC=AQ,四边形BNQC是平行四边形,QN=BC,CN=BQ,CNBD,=,BQ=CN=BD=,AQ=2,C四边形BQNC=2+2;如图3,当点Q在线段BD的延长线上,ABBD,C为AQ的中点,BC=CQ=AQ,平行四边形BNQC是菱形,BN=CQ,BNCQ,=,BQ=3BD=9,AQ=2,C四边形BNQC=2AQ=415解:(1)y=x+4与x轴交于点A,A(4,0),点B的横坐标为1,且直线y=x+4经过点B,B(1,3),抛物线y=ax2+bx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨余垃圾可行性研究报告
- 中国管道检测行业市场全景调研及投资规划建议报告
- 中国功率器件市场全面调研及行业投资潜力预测报告
- 2025年中国籽棉市场发展前景预测及投资战略咨询报告
- 2018-2024年中国酿酒业市场供需预测及投资战略研究咨询报告
- 2025年中国合金化镀锌板行业市场深度评估及投资战略规划报告
- 中国牙膏级磷酸氢钙行业市场调查报告
- 中国Wi-Fi6行业市场发展监测及投资潜力预测报告
- 2025年中国重型自卸车市场全面调研及行业投资潜力预测报告
- 大学生焦化厂认识实习报告
- 市场卖菜规划方案(3篇)
- 2025年河南省中考语文试卷(含答案)
- 低空经济现代化产业体系构建与战略路径
- 监管公司准入管理制度
- 贵州省2025年中考第三次模拟考试化学试卷(含答案)
- 水厂易制毒管理制度
- 2025年《社会工作法规与政策》课程标准
- 2025郑州市中牟县辅警考试试卷真题
- 商场日常保洁服务方案投标文件(技术方案)
- 医院防汛救灾管理制度
- 锅炉试题及答案
评论
0/150
提交评论