资源目录
压缩包内文档预览:(预览前20页/共22页)
编号:501471
类型:共享资源
大小:874.20KB
格式:ZIP
上传时间:2015-11-08
上传人:QQ28****1120
认证信息
个人认证
孙**(实名认证)
辽宁
IP属地:辽宁
30
积分
- 关 键 词:
-
机械毕业设计全套
- 资源描述:
-
XYY01-100@板料折弯机液压系统设计,机械毕业设计全套
- 内容简介:
-
陈九成 H 朷 N b nts e 漡眰 fb? 8wd nts ? ? ? & 8w4 鼜 nts 陈九成 H 朷 N b nts e 漡眰 fb? $yd nts ? ? ? & $y4 P nts 学生课程设计 说明书 题 目 : 板料折弯机液压系统设计 学生姓名 : 学 号 : 所在院 (系 ): 机电工程学院 专 业 : 机械设计制造及自动化 班 级 : 指 导 教 师 : 职称 : 讲师 nts 摘 要 立式板料折弯机 是机械、电气、液压三者紧密联系,结合的一个综合体。液压传动与机械传动、电气传动并列为三大传统形式,液压传动系统的设计在现代机械的 设计工作中占有重要的地位。因此,液压传动课程是工科机械类各专业都开设的一门重要课程。它既是一门理论课,也与生产实际有着密切的联系。为了学好这样一门重要课程,除了在教学中系统讲授以外,还应设置课程设计教学环节,使学生理论联系实际,掌握液压传动系统设计的技能和方法。 液压传动课程设计的目的主要有以下几点: 1、综合运用液压传动课程及其他有关先修课程的理论知识和生产实际只是,进行液压传动设计实践,是理论知识和生产实践机密结合起来,从而使这些知识得到进一步的巩固、加深提高和扩展。 2、在设计实践中学习和 掌握通用液压元件,尤其是各类标准元件的选用原则和回路的组合方法,培养设计技能,提高学生分析和嫁接生产实际问题的能力,为今后的设计工作打下良好的基础。 3、通过设计,学生应在计算、绘图、运用和熟悉设计资料(包括设计手册、产品样本、标准和规范)以及进行估算方面得到实际训练。 关键词 板料折弯机 ,液压传动系统,液压传动课程设计。 nts 目 录 摘要 1 任务分析 1 1.1 技术要求 1 1.2 任务分析 1 2 方案的确定 2 2.1 运动情况分析 2 2 1 1 变压式节流调速回路 2 2 1 2 容积调速回路 2 3 负载与运动分析 3 4 负载图和速度图的绘制 4 5 液压缸主要参数的确定 4 6 系统液压图的拟定 6 7 液压元件的选择 8 7.1 液压泵的选择 8 7.2 阀类元件及辅助元件 8 7.3 油管元件 9 7.4 油箱的容积计算 10 7.5 油箱的长宽高确 10 7.6 油箱地面倾斜度 11 7.7 吸油管和过滤器之间管接头的选择 11 7.8 过滤器的选取 11 nts 7.9 堵塞的选取 11 7.10 空气过滤器的选取 12 7.11 液位 /温度计的选取 12 8 液压系统性能的运算 13 8.1 压力损失和调定压力的确定 13 8.1.1 沿程压力损失 13 8.1.2 局部压力损失 13 8.1.3 压力阀的调定值计算 14 8.2 油液温升的计算 14 8.2.1 快进时液压系统的发热 量 14 8.2.2 快退时液压缸的发热量 14 8.2.3 压制时液压缸的发热量 14 8.3 油箱的设计 15 8.3.1 系统发热量的计算 15 8.3.2 散热量的计算 15 9 参考文献 17 致谢 18 nts 1 任务分析 1.1 技术要求 设计制造一台立式板料折弯机,该机压头的上下运动用液压传动,其工作循环为:快速下降、慢速加压(折弯)、快速退回。给定条件为: 折弯力 61.9 10 N 滑块重量 42.3 10 N 快速空载下降 行程 210mm 速度(1v) 23 /mm s 慢速下压(折弯) 行程 30mm 速度(2v) 12 /mm s 快速回程 行程 240mm 速度(3v) 52 /mm s 1.2 任务分析 根据滑块重量为 42.3 10 N ,为了防止滑块受重力下滑,可用液压方式平衡滑块重量,滑块导轨的摩擦力可以忽略不计。 设计液压缸的启动、制动时间为0.2tsV 。折弯机滑块上下为直线往复运动,且行程较小( 240mm) ,故可选单杆液压缸作执行器 ,且 液压缸的机械效率 0.91cm 。因为板料折弯机的工 作循环为快速下降、慢速加压(折弯)、快速回程三个阶段。各个阶段的转换由一个三位四通的电液换向阀控制。当电液换向阀工作在左位时实现快速回程。中位时实现液压泵的卸荷,工作在右位时实现液压泵的快速和工进。其工进速度由一个调速阀来控制。快进和工进之间的转换由行程开关控制。折弯机快速下降时,要求其速度较快,减少空行程时间,液压泵采用全压式供油。其活塞运动行程由一个行程阀来控制。当活塞以恒定的速度移动到一定位置时,行程阀接受到信号,并产生动作,实现由快进到工进的转换。当活塞移动到终止阶 段时,压力继电器接受到信号,使电液换向阀换向。由于折弯机压力比较大,所以此时进油腔的压力比较大,所以在由工进到快速回程阶段须要一个预先卸压回路,以防在高压冲击液压元件,并可使油路卸荷平稳。所以在快速回程的油路上可设计一个预先卸压回路,回路的卸荷快慢用一个节流阀来调节,此时换向阀处于中位。当卸压到一定压力大小时,换向阀再换到左位,实现平稳卸荷。为了对油路压力进行监控,nts 在液压泵出口安装一个压力表和溢流阀,同时也对系统起过载保护作用。因为滑块受自身重力作用,滑快要产生下滑运动。所以油路要设计一个液控单向阀,以构成 一个平衡回路,产生一定大小的背压力,同时也使工进过程平稳。在液压力泵的出油口设计一个单向阀,可防止油压对液压泵的冲击,对泵起到保护作用。2 方案的确定 2.1 运动情况分析 由折弯机的工作情况来看,其外负载和工作速度随着时间是不断变化的。所以设计液压回路时必须满足随负载和执行元件的速度不断变化的要求。因此可以选用变压式节流调速回路和容积式调速回路两种方式。 2.1.1 变压式节流调速回路 节流调速的工作原理,是通过改变回路中流量控制元件通流面积的大小来控制流入执行元件或自执行元件流出的流量来调节其速度。 变压式节流调速的工作压力随负载而变,节流阀调节排回油箱的流量,从而对流入液压缸的的流量进行控制。其缺点:液压泵的损失对液压缸的工作速度有很大的影响。其机械特性较软,当负载增大到某值时候,活塞会停止运动, 低速时泵承载能力很差,变载下的运动平稳性都比较差,可使用比例阀、伺服阀等来调节其性能,但装置复杂、价格较贵。优点:在主油箱内,节流损失和发热量都比较小,且效率较高。宜在速度高、负载较大,负载变化不大、对平稳性要求不高的场合。 2.1.2 容积调速回路 容积 调速回路的工作原理是通过改变回路中变量泵或马达的排量 来改变执行元件的运动速度。优点:在此回路中,液压泵输出的油液直接进入执行元件中,没有溢流损失和节流损失,而且工作压力随负载的变化而变化,因此效率高、发热量小。当加大液压缸的有效工作面积,减小泵的泄露,都可以提高回路的速度刚性。 综合以上两种方案的优缺点比较,泵缸开式容积调速回路和变压式节流调回路相比较,其速度刚性和承载能力都比好,调速范围也比较宽,工作效率更高,而发热却是最小的。考虑到最大折弯力为 61.9 10 N ,数值比较大,故选用泵缸开式容积调速回路。 2nts 3 负载与运动分析 要求设计的 板料折弯机 实现的工作循环是:快 速下降 工 作下压 (折弯 ) 快 速回程 停止。主要性能参数与性能要求如下: 折弯力 F= 61.9 10 N;板料折弯机的滑块重量 G= 42.3 10 N; 快速空载 下降速度1 23 /v mm s=0.023m/s,工 作下压 速度 12 /mm s =0.012m/s,快 速回程 速度3 52 /v mm s=0.052m/s, 板料折弯机 快 速空载下 降行 程1 210L mm=0.21m , 板料折 弯机工作下压行程2 30L mm=0.03m, 板料折弯机快速回 程: H=240mm=0.24m;启动制动时间st 2.0 ,液压系统执行元件选为液压缸。 液压缸采用 V型密封圈,其机械效率0.91cm 。由式 m vFmt 式中 m 工作部件总质量 v 快进或快退速度 t 运动的加速、减速时间 求得惯性负载 42 . 3 1 0 0 . 0 2 3 2709 . 8 0 . 2mv G vF m Nt g t 下再求得 阻力负载 静摩擦阻力 40 . 2 2 . 3 1 0 4 6 0 0sfFN 动摩擦阻力 40 . 1 2 . 3 1 0 2 3 0 0fd 表一 液压缸在各工作阶段的负载值 (单位 :N) 工况 负载组成 负载值 F 推力 / cmF 起动 sfFF 4600 5055 加速 fd mF F F 2570 2824 快进 fdFF 2300 2527 工进 fdF F F 1902300 2113667 快退 fdFF 2300 2527 注 :液压缸的机械效率取 0.91cm 3 nts 4 负载图和速度图的绘制 负 载图按上面数据绘制,如下图 a)所示。速度图按己知数值1 23 /v mm s,2 12 /v mm s,3 52 /v mm s,1 210L mm,2 30L mm,快速回程3 240L mm图一 板料折弯机液压缸的负载图和速度图 a)负载图 b)速度图 5 液压缸主要参数的确定 由表 11-2和表 11-3可知, 板料折弯机液压系统在最大负载约为 211KN时工作压力1 30P MPa。 将液压缸的无杆腔作为主工作腔,考虑到缸下行时,滑块自重 采用 液压方式平衡,则可计算出液压缸无杆腔的有效面积,取液压缸的机械效率 cm=0.91。 2m a x1 612113667 0 . 0 7 70 . 9 1 3 0 1 0cmFAmp 液压缸内径: 14 4 0 . 0 7 7 0 . 3 3 0 0AD m m m 参考 1, 按 GB/T2348-1993,取标准值 D=320mm=32cm 根据快速下降与快速上升进的速度比确定活塞杆直径 d: 22252 2 . 2 623V DV D d 快 上快 下2 2 1 2 2 . 1d m m c m 取标准值 d=220mm=22cm 4 nts 则:无杆腔 实际有效 面积 2 2 21 3 0 7 0 6 . 544A D c m 有杆腔 实际有效 面积 2 2 2 2 22 ( ) ( 3 2 2 2 ) 3 2 6 . 5 644A D d c m 液压缸在工作循环中各阶段的压力和流量计算见表 5.1。 表 5.1 各阶段的压力和流量 工作阶段 计算公式 负载 F/N 工作腔压力p/Pa 输入流量 / /minL 快速下降 启动 1 1 mcmFP A ; 1 1 1q vA 270 2853 106 3 等速 0 0 _ 工作下压 (折弯) 2 1 cmFP A ; 2 2 1q v A 2113667 630.17 10 55.44 0 快速回程 启动 3 2 cmFP A ; 3 3 2q v A 5055 0.17610 _ 等速 2824 0 095610 101 7 制动 2527 0.0771610 _ 液压缸在工作循环中各阶段的 功率 计算见表 5.2 表 5.2 工作循环中各阶段的功率 快速下降 启动 31 1 1 2 8 5 3 ( 1 0 6 . 3 1 0 / 6 0 ) 5 . 0 5 4P p q W 恒速 1 0P 工作下压 (折弯) 632 2 2 3 0 . 1 7 1 0 ( 5 5 . 4 4 1 0 / 6 0 ) 2 7 8 7 7 2 7 . 8 8P p q W K W 快速回程 启动 633 3 3 0 . 1 7 1 0 ( 1 0 1 . 7 1 0 / 6 0 ) 2 8 8 0 . 2 8 8P p q W K W 恒速 634 4 4 0 . 0 9 5 1 0 ( 1 0 1 . 7 1 0 / 6 0 ) 1 6 1 0 . 1 6 1P p q W K W 制动 635 5 5 0 . 0 7 7 1 1 0 ( 1 0 1 . 7 1 0 / 6 0 ) 1 3 0 . 7 0 . 1 3P p q W K W 5 nts 根据以上分析与计算数据处理可绘出液压缸的工况图 5.1: 77100图 5.1 液压缸的工况图 6 系统液压图的拟定 考虑到液压机工 作时所需功率较大,固采用容积调速方式; ( 1)为满足速度的有极变化,采用压力补偿变量液压泵供油,即在快速下降的时候,液压泵以全流量供油。当转化成慢速加压压制时,泵的流量减小,最后流量为 0; ( 2)当液压缸反向回程时,泵的流量恢复为全流量供油。液压缸的运动方向采用三位四通 Y型电磁换向阀和二位二通电磁换向阀控制。停机时三位四通换向阀处于中位,使液压泵卸荷; ( 3)为了防止压力头在下降过程中因自重而出现速度失控的现象,在液压缸有杆腔回路上设置一个单向阀; ( 4)为了压制时保压,在无杆腔进油路上和有杆腔回油路上设置 一个液控单向阀; ( 5)为了使液压缸下降过程中压力头由于自重使下降速度越来越快,在三位四通换向阀处于右位时,回油路口应设置一个溢流阀作背压阀使回油路有压力而不至于使速度失控; ( 6)为了使系统工作时压力恒定,在泵的出口设置一个溢流阀,来调定系统压力。由于本机采用接近开关控制 ,利 用接近开关来切换换向阀的开与关以实行自动控制; 6nts ( 7)为使液压缸在压制时不至于压力过大,设置一个压力继电器,利用压力继电器控制最大压力,当压力达到调定压力时,压力继电器发出电信号,控制电磁阀实现保压; 综上的折弯机液压系统原理如 下图:图 6.1折弯机液压系统原理 1-变量泵 2-溢流阀 3-压力表及其开关 4-单向阀 5-三位四通电液换向阀 6-单向顺序阀 7-液压缸 8-过滤器 9-行程阀 10-调速阀 11-单向阀 12-压力继电器 7nts 7 液压元件的选择 7.1 液压泵的选择 由液压缸的工况图,可以看出液压缸的最高工作压力出现在加压压制阶段时1 2 7 .8 8P M Pa,此时液压缸的输入流量极小,且进油路元件较少故泵到液压缸的进油压力损失估 计 取为 0 .5P MPa 。所以泵的最高工作压力0 . 5 2 7 . 8 8 2 8 . 3 8pP M P a 。 液压泵的最大供油量pq按液压缸最大输入流量( 106.3L/min)计算,取泄漏系数 K=1.1,则 1 . 1 1 0 6 . 3 1 1 6 . 9 3 / m i npqL 。 根据以上计算结果查阅机械设计手册 表 23.5-40,选用规格为160*CY14-1B 的压力补偿 变量型轴向柱塞泵,其额定压力 P=32MPa,排量为160mL/r,额定转速为 1000r/min,流量为 q=160L/min。 由于液压缸在保压时输入功率最大,这时液压缸的工作压力为30.17+0.5=30.67MPa,流量为 1 . 1 5 5 . 4 4 6 0 . 9 8 / m i nL ,取泵的总效率 0.85 ,则液压泵的驱动电机所要的功率为 3 0 . 6 7 6 0 . 9 8 3 6 . 6 76 0 6 0 0 . 8 5pppqP K W , 根据此数据按 JB/T9619-1999,选取 Y225M-6 型电动机,其额定 功率37P KW ,额定转速 980r/min,按所选电动机的转速和液压泵的排量,液压泵最大理论流量 9 8 0 / m i n 1 6 0 / 1 5 6 . 8 / m i ntq n V r m L r L ,大于计算所需的流量 116.93L/min,满足使用要求。 7.2 阀类元件及辅助元件 根据阀类元件及辅助元件所在油路的最大工作压力和通过该元件的最大实际流量可选出这些液压元件的型号及规格 ,结果见表 7.1。 8 nts 表 7.1 液压元件的型号及规格 序号 元件名称 额定压力 /Pa 额定流量ml/r 型号及规格 说明 1 变量泵 32 160 32*GY14-1B 额定转速 1000r/min驱动电机功率为 37KW 2 溢流阀 调压0.532 160 YF3-*-20B-C 通径 20mm 3 行程阀 - - YF3-*-20B-C 4 三位四通换向阀 28 160 WEH10G 通径 10mm 5 单项顺序阀 最大工作压力32MPa 160 HCT06L1 m a x 1 6 0 / m inqL(单向行程调速阀 ) 6 节流阀 - - FBG-3-125-10 7 单向阀 开启0.15MPa 最大 200 S20A220 通径 20mm 8 压力继电器 2 5 HED20 9 调速阀 2FRM10-21 7.3 油管元件 各元件间连接管道的规格按元件接口处尺寸决定,液压缸进、出油管则按输入、排出的最大流量计算,由于液压泵具体选定之后液压缸在各个阶段的进出流量已与已定数值不同,所以重新计算如 表 5.2,表中数值说明液压缸压制、快退速度2v, 3v与设计要求相近,这表明所选液压泵 的型号,规格是适宜的。 表 7.2 液压缸在各个阶段的进出流量 9 流量速度 快进 压制 快退 输入流量L/min 1 1 1 2( ) / ( )pq A q A A = 7 0 6 . 5 6 0 . 9 8 1 1 3 . 47 0 6 . 5 3 2 6 . 5 6 1 55.44q 1 1 1 6 .9 3pqq排出流量L/min 2 2 1 1( ) /3 2 6 . 5 6 1 1 3 . 4 5 2 . 47 0 6 . 5q A q A 2 2 1 1( ) /3 2 6 . 5 6 5 5 . 4 4 2 5 . 67 0 6 . 5q A q A 2 1 1 2( ) /7 0 6 . 5 1 1 6 . 9 3 2533 2 6 . 5 6q A q A 运动速度m/min 1 1 234/ ( )6 0 . 9 8 1 0 1 . 6( 7 0 6 . 5 3 2 6 . 5 6 ) 1 0pv q A A 2 1 1 3/5 5 . 4 4 1 00 . 7 87 0 6 . 5v q A343 1 2/ 1 1 6 . 9 3 1 0 / 3 2 6 . 5 6 1 03 . 5 8v q A nts 由表中数值可知,当油液在压力管中速度取 5m/s 时,按教材 P177 式 (7-9) 2 qd v 算得, 液压缸进油路油管内径 31 1 3 . 4 1 02 0 . 0 2 2 2 25 6 0d m m m 进; 液压缸回油路管内径 31 1 6 . 9 3 1 02 2 65 6 0d m m 回; 这 两根油管选用参照 液压系统设计简明手册 P111,进油管的外径34mm ,内径 25mm ,回油路管的外径 42mm ,内径 32mm 。 7.4 油箱的容积计算 容量 V (单位为 L)计算按教材式 (7-8) : PVq,由于液压机是高压 系统,11 。所以油箱的容量 1 1 6 0 . 9 8 6 7 0 . 7 8PV q L , 6 7 0 . 8 0 . 8 8 3 8 L 按 JB/T7938-1999 规定容积取 标 准值 1000VL . 7.5 油箱的长宽高确定因为油箱的宽、高、长的比例范围是 1: 1: 11: 2: 3,此处选择比例是 1:1.5: 2由此可算出油箱的宽、长、高大约分别是 1600MM,1100MM,770MM。并选择开式油箱中的分离式 油箱设计。其优点是维修调试方便,减少了液压油的温升和液压泵的振动对机械工作性能的影响;其缺点是占地面积较大。 由于系统比较简单,回路较短,各种元件较少,所以预估回路中各种元件和管道所占的油液体积为 0.6L。因为推杆总行程为 240mm,选取缸的内腔长度为360mm 。忽略推杆所占的体积,则液压缸的体积为221 7 0 6 . 5 1 0 3 6 0 1 0 2 5 . 4v A L L 缸 当液压缸中油液注满时,此时油箱中的液体体积达到最小为:8 0 0 2 5 . 4 0 . 6 7 7 4VL 油 min 则油箱中油液的高度为:1 7 7 4 1 0 0 0 / ( 1 6 0 1 1 0 ) 4 4H c m 由此可以得出油液体下降高度很小,因此选取隔板的高度为 44cm,并选用两块隔板。此分离式油箱采用普通钢板焊接而成,参照书上取钢板的厚度为: t=4mm。 为了易于散热和便于对油箱进行搬移及维护保养,取箱底离地的距离为200mm。 10 nts 故可知,油箱的总长总宽总高为: 长为:1 2 ( 1 1 0 0 2 4 ) 1 1 0 8l l t m m m m 宽为:1 2 ( 1 6 0 0 2 4 ) 1 6 0 8w w t m m m m 高为: ( 2 0 0 4 4 ) ( 7 7 0 4 2 0 0 4 ) 9 7 81h h m m m m m m 7.6 油箱地面倾斜度 为了 更好的清洗油箱,取油箱底面倾斜度为: 1 7.7 吸油管和过滤器之间 管接头的选 择 在此选用卡套式软管接头 查机械设计手册 4表 23.9 66得其连接尺寸如下表: 表 7.3 单位: mm 公称压力 MPa 管子 内径 0d mm 0D minL卡套式管接头0d公称尺寸 极限偏差 G(25) 22 18.5 25 0.105 38 22 7.8 过滤器的选取取过滤器的流量至少是泵流量的两倍的原则,取过滤器的流量为泵流量的2.5倍。故有 : 2 . 5 (1 0 6 . 3 2 . 5 ) / m i n 2 6 5 . 7 5 / m i nq q L L 泵 入过 滤 器查中国机械设计大典表 42.7 7得,先取通用型 WU系列网式吸油中过滤器 : 表 7.4 7.9 堵塞的选取 考虑到钢板厚度只有 4mm,加工螺纹孔不能太大,查中国机械设计大典表 42.7 178选取外六角螺塞作为堵塞,详细尺寸见下表:11 型号 通 径 Mm 公称流量 / minL 过滤精度 m CXL-250 100 50 250 100 nts 表 7.5d 1d D e S L h b 1b R C 重量Kg 基本尺寸 极限偏差 12 1.25M 10.2 22 15 13 00.244 12 3 3 1 1.0 0.032 7.10 空气过滤器的选取 按照空气过滤器的流量至少为液压泵额定流量 2倍的原则, 即: 2 2 1 0 6 . 3 / m i n 2 1 2 . 6 / m i nq q L Lp 过 滤 器选用 EF 系列液 压空气过滤器,参照机械设计手册 表 23.8-95 得,将其主要参数列于下表: 表 7.6参数 型号 过滤注油口径 mm 注油流量 L/min 空气流量 L/min 油过滤面积 L/min 1Hmm 2Hmm 1Dmm 2Dmm 3Dmm 四只螺钉均布 mm 空气进滤精度 mm 油过滤精度 m E2F-50 32 32 265 270 154 58 66 82 96 M6 14 0.105 125 注:油过滤精度可以根据用户的要求是可调的。 7.11 液位 /温度计的选取 选取 YWZ系列液 位液温计,参照机械设计 手册 表 23.8-98选用YWZ-150T 型 。 考虑到钢板的刚度,将其按在偏左边的地方。 12nts 8 液压系统性能的运算 8.1 压力损失和调定压力的确定 由上述计算可知,工进时油液流动速度较小,通过的流量为 55.44L/min,主要压力损失为阀件两端的压降可以省略不计。快进时液压杆的速度31 411 1 3 . 4 1 0 1 . 6 / m i n 0 . 0 3 /7 0 6 . 5 1 0pqv m m sA , 此 时 油 液 在 进 油 管 的 速 度3261 1 3 . 4 1 0 3 . 8 5 /0 . 2 5 2 5 1 0 6 0pqv m sA 8.1.1 沿程压力损失 沿程 压力损失首先要判断管中的流动状态,此系统采用 N32号液压油,室温为 20 度时 421 .0 1 0 /ms ,所以有34/ 3 . 8 5 2 5 1 0 / 1 . 0 1 0 9 6 2 . 5 2 3 2 0eR v d ,油液在管中的流动状态为层流,则阻力损失系数 7 5 / 0 .0 8eR ,若取进油和回油的管路长均为 2m,油液的密度为 38 9 0 /K g m , 则 进 油 路 上 的 沿 程 压 力 损 失 为12 2 432 8 9 0/ / 2 0 . 0 8 3 . 8 5 4 . 2 3 1 02 5 1 0 2p l d v P a 。 8.1.2 局部压力损失 局部 压力损失包括管道安装和管接头的压力损失和通过液压阀的局部压力损失,由于管道安装和管接头的压力损失一般取沿程压力损失的 10%,而通过液压阀的局部压力损失则与通过阀的流量大小有关,若阀的额定流量和额定压力损失分别为rrqq和,则当通过阀的流量为 q 时的阀的压力损失rq,由2()rrqpp q 算得 21 1 3 . 40 . 5 ( ) 0 . 3 5160p M P a 小于原估算值 0.5MPa,所以是安全的。 同理快进时回油路上的流量12211 1 3 . 4 3 2 6 . 5 6 5 2 . 4 / m i n7 0 6 . 5qAqLA 则回油管 路中的速度 3265 2 . 4 1 0 1 . 0 9 /6 0 0 . 2 5 3 2 1 0v m s ;由此可以计算出 13 nts 341 . 0 9 3 2 1 0/ 3 4 8 . 81 . 0 1 0eR v d ( 2452320, 所 以 为 层 流 ) ; 7 5 7 5 0 . 2 1 53 4 8 . 8eR , 所 以 回 油 路 上 的 沿 程 压 力 损 失 为22 2 542 8 9 0/ / 2 0 . 2 1 5 1 . 0 9 0 . 7 1 1 03 2 1 0 2p l d v P a 。 由 上 面 的 计 算 所 得 求 出 : 总 的 压 力 损 失p 1221AppA 3 2 6 . 5 60 . 0 4 2 3 0 . 0 7 1 0 . 0 7 57 0 6 . 5 M P a 这与估算值有差异,应该计算出结果来确定系统中的压力阀的调定值。 8.1.3 压力阀的调定值计算 由于液压泵的流量大,在工进泵要卸荷,则在系统中卸荷阀的调定值应该满足 快 进 时 要 求 , 因 此 卸 荷 阀 的 调 定 值 应 大 于 快 进 时 的 供 油 压 力12 1 1 3 . 6 6 7 0 . 0 7 5 3 . 07 0 6 . 5pFp p M P aA ,所以卸荷阀的调定压力值应该取3MPa 为好。溢流阀的调定压力值应大于卸荷阀的调定压力值 0.30.5MPa,所以取溢流阀的调定压力值为 3.5MPa。背压阀的调定压力以平衡 板料折变机 的自重,即4422 . 3 1 0 / 3 2 6 . 5 6 1 0 0 . 7Fp P a M P aA 背 8.2 油液温升的计算 在整个工作循环中,工进和快进快退所占的时间相差不大,所以,系统的发热和油液温升可用一个循环的情况来计算。 8.2.1快进时液压系统的发热量 快进时液压缸的有效功率为:0 2 7 0 0 . 0 2 3 6 . 2 1 0 . 0 0 6 2 1P F v W K W 泵的输出功率为: 32 8 5 3 1 0 6 . 3 1 0 / 6 0 5 . 9 4 7 0 . 0 0 7 3 4 70 . 8 5ipqP W K W 因此快进液压系统的发热量为: 14 0 0 . 0 0 7 3 5 0 . 0 0 6 2 1 0 . 0 0 1 1 3iiH
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。