数控铣床两工位夹紧装置液压系统设计【含CAD图纸、说明书】
收藏
资源目录
压缩包内文档预览:
编号:50193375
类型:共享资源
大小:2.06MB
格式:ZIP
上传时间:2020-02-18
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
30
积分
- 关 键 词:
-
含CAD图纸、说明书
数控
铣床
两工位
夹紧
装置
液压
系统
设计
CAD
图纸
说明书
- 资源描述:
-








- 内容简介:
-
目录1 概述31.1 液压传动的现状及展望31.2 液压传动的优点缺点42 液压系统的设计62.1技术要求62.2动力分析和运动分析62.2.1 工位夹紧缸的负载计算62.2.2 工位夹紧缸的负载计算72.3 液压系统主要参数的确定92.3.1系统工作压力的确定92.4液压执行器主要结构参数的计算102.4.1工位夹紧缸主要结构参数的确定102.4.2 工位夹紧缸主要结构参数的确定112.4.3液压缸工作循环中各阶段的压力、流量和功率123 液压系统原理图的拟定和方案论证143.1 制定基本方案143.2 油路循环方式的分析和选择143.3调速方案的分析和选择153.4液压动力源的分析与选择163.5 液压回路的分析、选择与合成173.6液压原理图的拟定与设计174 计算和选择液压元件194.1 液压泵的选择194.1.2 液压泵站组件的选择194.1.3 液压泵的计算与选择194.2 液压控制阀的选择224.2.1 选择依据224.2.2 选择阀类元件应注意的问题224.3 液压附件的计算和选择234.3.1 确定管件的尺寸234.3.2 确定油箱容积255 液压系统性能验算275.1液压系统压力损失验算275.1.1工位夹紧缸的压力损失验算275.2 估算系统效率285.3 系统的发热和温升306 液压动力源装置的设计327 液压装置的总体配置347.1液压控制阀的块式集成347.2集成块设计348 液压系统的污染控制368.1污染物的形态和来源368.2油液污染对液压系统的危害368.3污染控制措施378.4油液的过滤389 液压系统泄露控制与密封399.1泄露及其危害399.2 液压系统防漏与治漏的主要措施399.3液压装置泄露控制的基本准则409.4 密封装置的选择4110 液压系统噪声的控制4211液压介质的选择4311.1液压油的主要性能4311.2液压油的质量要求4311.3液压油的选用4412 液压系统安装、调试、维护和检修4512.1 液压系统的安装4512.1.1在液压系统中安装液压元件时的注意事项4512.1.2在液压系统中安装液压泵时的注意事项4512.2液压系统调试4512.2.1 调试前的检查4612.2.2 使用液压系统要注意的问题4612.2.3 系统耐压试验4712.3液压系统的维护和检修4812.3.1液压站使用中的注意事项4912.3.2检修液压系统时的注意事项4913 结论51致谢52参考文献53附录A 译文54附录B 外文文献671 概述1.1 液压传动的现状及展望目前,液压传动及控制技术不仅用于传统的机械操纵、助力装置,也用于机械的模拟加工、转速控制、发动机燃料进给控制,以及车辆动力转向、主动悬挂装置和制动系统,同时也能够扩展到航空航天和海洋作业等领域。当前液压技术正在继续向以下几个方面发展。1)节能近年来,由于世界能源的紧缺,各国都把液压传动的节能问题作为液压技术发展的重要课题。20世纪70年代后期,德、美等国相继研制成功负载敏感泵及低功率电磁铁等。最近美国威克斯公司又研制成功用于功率匹配系统的CMX阀。2)液压与微电子、计算机技术相结合20世纪80年代以来,逐步完善和普及的计算机控制技术和集成传感技术为液压技术与电子技术相结合创造了条件。随着微电子、计算机技术的发展,出现了各种数字阀和数字泵,并出现了把单片机直接装在液压组件上的具有位置或力反馈的闭环控制液压元件及装置。3)提高液压传动的可靠性由于有限元法在液压元件设计中的应用,可靠性实验、研究工作的广泛开展以及新材料、新工艺的发展等,是液压元件的寿命得到提高。由于对飞机、船舶、冶金等一些重要液压系统采用多裕度设计,并在系统中设置旁路净化回路及具有初级智能的自动故障检测仪表等,加强了油液的污染度控制。上述领域内的一些重要成果,使液压系统的可靠性逐年提高。4)高度集成化叠加阀、集成块、插装阀的应用以及把各种控制阀集成于液压泵及液压执行元件上形成组合元件,有些还把单片机等集成在其控制机构上,达到了集机、电、液于一体的高度集成化。此外,高压、高转速、低噪声组件的研究,高效滤材的研究,环保型工作介质及其相应高压液压组件的研究等也是值得关注的动向。1.2 液压传动的优点缺点工程机械广泛应用的传动方式主要有机械传动、电气传动、气压传动和液压传动。它们各有优缺。机械传动是发展最早而且应用最普遍的一种传动方式。具有传动准确可靠,操作简单,机构直观易掌握,负荷变化对传动比影响小等优点。但是对自动控制的情况,单纯靠机械传动来完成就显得结构复杂而笨重,而且远距离操纵困难、操作力度大、安装位置变化的自由度小等缺点。电气传动是通过电来进行传动和控制的,利用交流电机来传动,简单而且价廉,应用最广,也是各种传动的组成部分。但交流电机一般难于进行无级变速,而直流电机虽然可以实现无级变速,但支流电源价格比较昂贵。电气控制,特别是电子计算机控制,具有信号变化方便,远距离操纵容易等独特优点,在自动化程度要求高的场合是必不可少的。气压传动是以压缩空气为传动介质,可通过调节气量很容易的实现无级变速。同时有传递及变换信号方便、反应快、结构简单、无污染等优点。空气黏度小,故管道压力损失小,流速大,而且可获得高速度。但是气动传动的致命弱点是空气压缩性大,无法获得均匀而稳定的运动。此外为减少泄漏,提高效率,气动系统的压力不能太高。这使其不能用于大功率场合。液压传动是用液体作为介质来传递能量的,液压传动与上述三种传动比较有以下一些优点:1)液压传动可在运行过程中方便地实现大范围的无级调速,调速范围可达1000:1。液压传动装置可在极低的速度下输出很大的力,如果采用机械传动装置减速,其减速器结构往往十分庞大;2)在输出相同功率的情况下,液压传动装置的体积小、质量轻、结构紧凑、惯性小。由于液压系统中的压力比电枢磁场中单位面积上的磁力大30倍40倍,液压传动装置的体积和质量只占相同功率电动机的12%左右。因此,液压传动易于实现快速启动、制动及频繁幻想,每分钟的换向次数可达500次(左右摆动)、1000次(往复移动);3)液压传动易于实现自动化,特别是采用电液和气液传动时,可实现复杂的自动控制;4)液压装置易于实现过载保护。当液压系统超负荷(或系统承受液压冲击)时,液压油可以经溢流阀排回油箱,系统得到过载保护;5)易于设计、制造。液压元件已实现了标准化、系列化和通用化。液压系统的设计、制造和使用都比较方便。液压元件的排列布置也有很大的灵活性。液压传动的缺点:1)不能保证严格的传动比。着是由于液压介质的可压缩性和不可避免的泄露等因素引起的;2) 系统工作时,对温度的变化较为敏感。液压截至的粘性随温度变化而变化,从而使液压系统不易保证在高温和低温下都具有良好的工作稳定性;3) 在液压传动中,能量需经过两次变换,且液压能在传递过程中有流量和压力的损失,所以系统能量损失较大,传动效率较低;4) 元件的制造精度高、造价高,对其使用和维护提出了较高的要求;5) 出现故障时,比较难于查找和排除,对维修人员的技术水平要求较高。从液压传动的优缺点来看,优点大于缺点。采用液压传动符合本次设计的工位夹紧装置的工作条件。 2 液压系统的设计2.1技术要求本设计是完成某机床需要对零件进行两工位装夹装置(装夹装置静动摩擦因数,)的设计,拟采用缸筒固定的液压缸驱动夹紧装置,完成工件装夹运动。夹紧装置由液压与电气配合实现的自动循环要求为:工位夹紧缸夹紧工位夹紧缸松开工位夹紧缸夹紧工位夹紧缸松开。机床工位夹紧装置的运动参数和动力参数如表2-1所列。表2-1 机床工位夹紧装置的运动参数和动力参数Tab.2-1 The movement and dynamic parameters of Machinist - clamping device工况行程/mm速度时间/运动部件重力G/N负载/N启动、制动时间工位夹紧缸夹紧350.012245050000.053松开0.0351工位夹紧缸夹紧250.125150020000.050.2松开动力分析和运动分析2.2.1 工位夹紧缸的负载计算惯性负载夹紧: =2450/9.810.012/0.05 =59N松开: =2450/9.810.035/0.05 =175N静摩擦负载 =0.2(2450+0) = 490N动摩擦负载 =0.1(2450+0) =245N2.2.2 工位夹紧缸的负载计算惯性负载夹紧:=1500/9.810.125/0.05 =382N松开: =1500/9.810.25/0.05 =765静摩擦负载 =0.2(1500+0) = 300N动摩擦负载 =0.1(1500+0) =150N由此得工位夹紧缸和工位夹紧缸在工作的各个阶段所受的负载,由表2-2所示表2-2工位夹紧缸的外负载计算结果Tab.2-2 The load calculation results of clamping cylinder工况负载组成外负载F/N启动490加速304夹紧5245反向启动490加速420松开245表2-3工位夹紧缸的外负载计算结果Tab.2-3 The load calculation results of clamping cylinder工况负载组成外负载F/N启动300加速532夹紧2150工况负载组成外负载F/N反向启动300加速915松开1502.3 液压系统主要参数的确定2.3.1系统工作压力的确定根据液压执行元件的负载表可以确定系统的最大负载数,在充分考虑系统所需的流量、性能等因素后,可参照表2-4或者2-5选择系统的工作压力表2-4按负载选择工作压力Tab.2-4 Choose actuating pressure according to the loads负载 /kN50系统压力/MPa5-7表2-5 按主机类型选择系统工作压力Tab.2-5 Select system pressure By the types主机类型设计压力/MPa机床精加工机床0.82半精加工机床35龙门刨床28拉床810农业机械、小型工程机械、工程机械辅助机构1016液压机、大中型挖掘机、中型机械、起重运输机械2032地质机械、冶金机械、铁道车辆维护机械、各类液压机具等25100本设计根据主机类型是数控铣床,初步选择系统压力为4MPa。为了防止夹紧时发生冲击,液压缸需保持一定回油背压。参考表2-6液压执行器的背压力取0.2表2-6液压执行器的背压力Tab.2-6 The selection of the Backpressure value系统类型背压力(MPa)中低压系统简单系统和和一般轻栽节流调速系统0.20.5回油带背压阀调整压力一般为0.51.5回油路设流量调节阀的进给系统满载工作时0.5设补油泵的闭式系统0.81.5高压系统初算是可忽略不计2.4液压执行器主要结构参数的计算2.4.1工位夹紧缸主要结构参数的确定本设计将工位夹紧缸的有杆腔作为主工作腔,则有公式: (21)公式中 液压缸无杆腔的有效面积; 液压缸有杆腔的有效面积;液压缸的最大负载力;液压缸的机械效率(一般取0.9-0.97)本设计取0.95; 液压缸工作腔压力; 系统的背压,本设计取0.2Mpa。当计算液压缸的结构参数时,还需确定活塞杆直径与液压缸内径的关系,以便在计算出液压缸内径D时,利用这一关系获得活塞杆的直径d。通常是由液压缸的往返速比确定这一关系,即,按这一关系得到的d的计算公式入如下表表2-7根据往返速度比计算活塞杆直径d的公式Tab.2-7 The recommended values of The piston rod diameter d往返速度比31.461.612活塞杆直径d0.3D0.4D0.5D0.55D0.62D0.7D油缸的速比,可由机械设计手册查得。本设计取=1.33。则由上表查得d=0.5D。得D=49.9(mm)按GB/T2348-1980 ,取标准值: D=50(mm)又d=0.5D,得d=25(mm),取标准值d=28(mm)则液压缸无杆腔实际有效面积为: =19.6有杆腔实际有效面积为: = 工位夹紧缸主要结构参数的确定工位夹紧缸的无杆腔作为主工作腔,则有公式:则有 得 D=27.9(mm)按GB/T23481980 ,取标准值: D=32(mm)又 d=0.5D,得 d=16(mm),取标准值 d=20(mm)则液压缸无杆腔实际有效面积为: =8.04有杆腔实际有效面积为:=4.892.4.3液压缸工作循环中各阶段的压力、流量和功率根据上述假定条件经计算得到液压缸工作循环中各阶段的压力、流量和功率,如下表所示: 表2-8 工位夹紧缸工作循环个阶段的压力、流量和功率 Tab.2-8 The pressure, rate of flow and power of the clamping cylinderat different stage工作阶段计算公式负载/N回油腔压力/MPa工作腔压力/MPa输入流量Q输入功率/w启动4900.98加速3040.20.53夹紧52450.24.380.97270.96反向启动4900.40加速4200.20.30松开2450.20.274.11618.52表2-9 工位夹紧缸工作循环各个阶段的压力、流量和功率Tab.2-9 The pressure, rate of flow and power of the clamping cylinderat different stage工作阶段计算公式负载/N回油腔压力/MPa工作腔压力/MPa输入流量Q输入功率/w启动3000.39加速5320.20.44夹紧21500.23.066.03307.53反向启动3000.65加速9150.20.85松开1500.20.654.11679.463 液压系统原理图的拟定和方案论证3.1 制定基本方案液压系统的设计,除了满足主机在动作和性能方面规定的要求外,还必须符合体积小、重量轻、成本低、效率高、结构简单、工作可靠、使用和维修方便等一些公认的普遍设计原则。本液压系统设计的内容大致为: 1)油路循环方式的分析与选择;2)调速方案的分析和选择;3)液压动力源的分析与选择;4)液压回路的分析、选择与合成;5)液压系统原理图的拟订。3.2 油路循环方式的分析和选择液压系统油路循环方式分为开式和闭式两种,他们各自的特点及相互比较见下表表3-1开式系统和闭式系统的比较Tab.3-1 Compare of Hold dyadic system and Shut dyadic system油液循环方式开式闭式散热条件较方便,但是油箱较大较复杂,需要用辅泵来换油冷却抗污染性较差,但可采用压力油箱或者油箱呼吸器来改善较好,但是油液过滤要求较高系统效率管路压力损失较大,用节流调速时效率低管路腰里损失较小,容积调速时效率较高限速 制动形式用平衡阀进行能耗限速,用制动阀进行能耗制动,引起油液发热液压泵由电动机拖动时,限速及制动过程中拖动电能向电网输电,回收部分能量,即是再生限速和再生制动其他对泵的自吸性能要求高对主泵的自吸性能要求低油路循环方式的选择主要取决于液压系统的调速方式和散热条件。一般来说,凡是有较大空间可以存放油箱而且不需要另设散热装置的系统,要求结构尽可能简单的系统,采用节流调速或者容积节流调速的系统,均宜采用开式系统。在本设计中,油泵向两个液压执行元件供油而且功率较小,整个系统的结构也比较简单,所以本设计采用开式系统。3.3调速方案的分析和选择调速方案对主机的性能起到决定性的作用。相应的调整方式有节流调速、容积调速以及二者的结合容积节流调速。 节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。容积调速是靠改变液压泵或液压马达的排量来达到调速的目的。其优点是没有溢流损失和节流损失,效率较高。但为了散热和补充泄漏,需要有辅助泵。此种调速方式适用于功率大、运动速度高的液压系统。容积节流调速一般是用变量泵供油,用流量控制阀调节输入或输出液压执行元件的流量,并使其供油量与需油量相适应。此种调速回路效率也较高,速度稳定性较好,但其结构比较复杂。节流调速又分别有进油节流、回油节流和旁路节流三种形式。进油节流起动冲击较小,回油节流常用于有负载荷的场合,旁路节流多用于高速。调速回路一经确定,回路的循环形式也就随之确定了。节流调速一般采用开式循环形式。在开式系统中,液压泵从油箱吸油,压力油流经系统释放能量后,再排回油箱。开式回路结构简单,散热性好,但油箱体积大,容易混入空气。容积调速大多采用闭式循环形式。闭式系统中,液压泵的吸油口直接与执行元件的排油口相通,形成一个封闭的循环回路。其结构紧凑,但散热条件差。表3-2各种调速方式的性能比较Tab.3-2 various forms of Speed Performance Comparison主要性能节流调速容积调速回路容积节流调速回路简式节流调速系统带压力补偿阀的节流调速系统变量泵 定量马达流量适应功率适应进油节流及回油节流旁路节流调速阀在进油路调速阀在旁油路及溢流节流调速回路负载速度刚度差很差好较好好特性承载能力好较差好较好好调速范围大小大较大大功率特性效率低较低低较低最高较高高发热大较大大较大最小较小小成本低较低高最高适用范围小功率 轻载或者低速的中 低压系统及工程机械非经常性调速的场合大功率高速中高压系统负载变化小,速度刚度要大的中小功率,中压系统负载变化大速度刚度较大的中高压系统考虑到系统本身的性能要求和一些使用要求以及负载特性,本设计决定采用节流调速。3.4液压动力源的分析与选择 液压系统的工作介质完全由液压源来提供,液压源的核心是液压泵。节流调速系统一般用定量泵供油,在无其他辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经溢流阀流回油箱,溢流阀同时起到控制并稳定油源压力的作用。容积调速系统多数是用变量泵供油,用安全阀限定系统的最高压力。为节省能源提高效率,液压泵的供油量要尽量与系统所需流量相匹配。对在工作循环各阶段中系统所需油量相差较大的情况,一般采用多泵供油或变量泵供油。对长时间所需流量较小的情况,可增设蓄能器做辅助油源。油液的净化装置是液压源中不可缺少的。一般泵的入口要装有粗过滤器,进入系统的油液根据被保护元件的要求,通过相应的精过滤器再次过滤。为防止系统中杂质流回油箱,可在回油路上设置磁性过滤器或其他型式的过滤器。根据液压设备所处环境及对温升的要求,还要考虑加热、冷却等措施。本设计采用节流调速,所以使用定量泵供油。3.5 液压回路的分析、选择与合成 1)选择系统一般都必须设置的基本回路,包括调压回路、向回路、卸荷回路及安全回路等。 2)根据系统的负载特性和特殊要求选择基本回路,在本系统中考虑到安全的要求,设置了背压回路,同时由于是两个执行元件先后动作,且没有顺序联动关系,所以设置了互不干扰回路。 3)合成系统 选定液压基本回路之后,配以辅助性回路,如控制油路,润滑油路、测压油路等,可以组成一个完整的液压系统。 在合成液压系统时要注意以下几点:防止油路间可能存在的相互干扰;系统应力求简单,并将作用相同或者相近的回路合并,避免存在多余回路;系统要安全可靠,力求控制油路可靠;组成系统的元件要尽量少,并应尽量采用标准元件;组成系统时还要考虑节省能源,提高效率减少发热,防止液压冲击;测压点分布合理等。3.6液压原理图的拟定与设计根据上述分析,可以拟定整个液压系统的原理图如下:1油箱 2空气滤清器 3液位计 4吸油过滤器 5液压泵6单向阀 7压力表开关 8压力表 9通道体10叠加式溢流阀11叠加式减压阀 12叠加式双单向节流阀13电磁换向阀14叠加式双液控单向阀 15压力继电器 16电动机图3-1 液压系统的原理图Fig.4-1 Hydraulic system diagram4 计算和选择液压元件液压元件的计算是指计算元件在工作中承受的压力和流量,以便选择零件的规格和型号,此外还要计算原动机的功率和油箱的容量。选择元件时应尽量选择标准件。4.1 液压泵的选择4.1.2 液压泵站组件的选择 液压泵站一般由液压泵组、油箱组件、过滤器组件和蓄能器组件等组成。根据系统的实际需要,本设计选择液压泵组、油箱组件、过滤器组件。液压泵组由液压泵,原动机,连轴器及管路附件等组成。油箱组件由油箱面板,空气滤清器,液位显示计等组成。过滤器组将是保持工作介质清洁度必备的组将,可根据系统对介质清洁度的不同要求设置不同等级的粗过滤器,精过滤器等。4.1.3 液压泵的计算与选择液压泵的最大工作压力: = (41)其中 液压执行元件最大工作压力; 液压泵出口大执行元件入口之间所有的沿程压力损失和局部压力损失之和。初算时按经验数据选取:管路简单,管中流速不大时,取 0.2Mpa0.5Mpa;管路复杂而且管中流速较大或者有调速元件时,取0.5MPa1.5MPa。由上述选取0.5MPa,然后带入公式(4-1)计算得:4.38+0.54.88MPa在选择泵的额定压力时应考虑到动态过程和制造质量等因素,要使液压泵有一定的压力储备。一般泵的额定工作压力应比上述最大工作压力高2060,所有最后算得的液压泵的额定压力应为:4.88(1+0.25)6.1MPa表4-1 液压泵的总效率Tab.4-1 The total efficiency of hydraulic pumps液压泵类型齿轮泵螺杆泵叶片泵柱塞泵总效率0.650.900.700.850.550.850.800.90液压泵的流量按下式计算 K (42)式中 K考虑系统泄漏和溢流阀保持最小溢流量的系数,一般取K1.11.3,同时工作的执行元件的最大总流量(4.1163=12.348L/min)本设计取泄漏系数为1.1,所以: 1.112.34813.583L/min由液压元件产品样本查得CBN-E312齿轮泵满足上述估算得到的压力和流量要求:该泵的额定压力为16MPa,公称排量V12 mL/rev,额定转速为1800r/min。现取泵的容积效率0.85,当选用转速n1400 r/min的驱动电机时,泵的流量为: Vn 12 mL/rev0.851400r/min 14L/min由前面的计算可知泵的最大功率出现在工位夹紧阶段,现取泵的总效率为 0.85,则: 840W选用电动机型号:Y90S4B5型封闭式三相异步电动机满足上述要求,其转速为1400r/min,额定功率为1.5kW。电动机与泵之间采用连轴器联结。根据所选择的液压泵规格及系统工作情况,可计算出液压缸在各个阶段的实际进出流量,运动速度和持续时间,从而为其他液压元件的选择及系统的性能计算奠定了基础。计算结果如下表所示:表4-2工位夹紧缸的实际工况Tab.4-2 The actual working conditions of the clamping cylinder工作阶段流量/速度/时间/s无杆腔有杆腔夹紧 = =1.410.972=0.012 = =3松开= = =4.67= =4.67 3.21 = =0.039 = 1表4-3工位夹紧缸的实际工况Tab.4-3 The actual working conditions of the clamping cylinder工作阶段流量/速度/时间/s无杆腔有杆腔夹紧6.03 = =3.67=0.125 = =0.2松开= =14 23.02= =14 = =0.48 = 0.05上表中油缸的工作腔面积; 油缸回油腔面积; 进油缸流量; 出油缸流量; 油缸的运动速度; 油缸的运动时间。4.2 液压控制阀的选择4.2.1 选择依据选择依据为:额定压力,最大流量,动作方式,安装固定方式,压力损失数值,工作性能参数和工作寿命等。4.2.2 选择阀类元件应注意的问题1)应尽量选用标准定型产品,除非不得已时才自行设计专用件;2)阀类元件的规格主要根据流经该阀油液的最大压力和最大流量选取。选择溢流阀时,应按液压泵的最大流量选取。选择节流阀和调速阀时,应考虑其最小稳定流量满足机器低速性能的要求;3)一般选择控制阀的额定流量应比系统管路实际通过的流量大一些,必要时,允许通过阀的最大流量超过其额定流量的20%;根据以上要求,现选定各类阀和组将的型号如表4-4所示:表4-4 各种液压元件的类型选择Tab.4-4 Various types of hydraulic components of choice序号名称通过流量/L额定流量/额定压力/MPa额定压降/MPa型号规格1吸油过滤器1420MF-022单向阀1440250.1CIT-03-A13压力继电器25MJCS-02B-HH4压力表010W-2-1/2-100-A15压力表开关142110GCT-026叠加式溢流阀1435250.12MRF-02P-K1-207叠加式减压阀1435250.2MPR-02P-K1-028叠加式单向阀1435210.1MPC-02W-05-309二位四通换向阀23.0280250.2D5-02-3N2-D210叠加式单向节流阀23.0235210.15MTC-02W-K-I-2011二位四通换向阀1480250.2D5-02-3N2-D212叠加式单向节流阀1435210.15MTC-02W-K-I-2013空气滤清器AB-116214液位计LS-3”4.3 液压附件的计算和选择4.3.1 确定管件的尺寸表4-5 油管中的允许流速Tab.4-5 Allow the pipeline flow油液流经油管吸油管高压管回油管短管及局部收缩处允许速度(m/s)0.51.52551.52.557表4-6 安全系数Tab.4-6 Safety Factor管内最高工作压力7717.517.5安全系数864由表4-2和4-3 得知工位夹紧液压缸有杆腔和无杆腔油管的实际最大流量分别为3.21L/min和4.67L/min,工位夹紧液压缸有杆腔和无杆腔油管的实际最大流量分别为14L/min和23.02L/min,按照表4-5的推荐值取油管内油液的允许流速为4m/min,按计算公式: d (43)式中q通过油管的最大流量; V油管中允许流速; d油管内径。将数值代入公式(4-3)得工位夹紧液压缸: 4.9mm 4.1mm工位夹紧液压缸: 11.1mm 8.6mm根据JB82766,同时考虑到制作方便,工位夹紧液压缸两根油管同时选用101(外径10mm,壁厚1mm)的10号冷拔无缝钢管。工位夹紧液压缸两根油管同时选用141(外径14mm,壁厚1mm)的10号冷拔无缝钢管。由机械设计手册查得管材的抗拉强度为412MPa,由表4-6取安全系数为8,按公式对管子的强度进行校核: (44)式中 p管内最高工作压力; d油管内径; n安全系数;管材抗拉强度;油管壁厚。将数值代入公式(4-4)得:1mm= 0.5mm1mm= 0.7mm所以选的管子壁厚安全。其他油管,可直接按所连接的液压元、辅件的接口尺寸决定其管径的大小。4.3.2 确定油箱容积油箱的作用是储油,散发油的热量,沉淀油中杂质,逸出油中的气体。其形式有开式和闭式两种:开式油箱油液液面与大气相通;闭式油箱油液液面与大气隔绝。开式油箱应用较多。油箱设计要点:1)油箱应有足够的容积以满足散热,同时其容积应保证系统中油液全部流回油箱时不渗出,油液液面不应超过油箱高度的80%;2)吸箱管和回油管的间距应尽量大,之间应设置隔板,以加大液流循环的途径,这样能提高散热、分离空气及沉淀杂质的效果。隔板高度为液面高度的2/33/4。吸油管及回油管应插入最低液面以下,以防止吸空和回油飞溅产生气泡。管口与箱底、箱壁距离一般不小于管径的3倍。吸油管可安装100m左右的网式或线隙式过滤器,安装位置要便于装卸和清洗过滤器。回油管口要斜切45角并面向箱壁,以防止回油冲击油箱底部的沉积物,同时也有利于散热;3)油箱底部应有适当斜度,泄油口置于最低处,以便排油;4)注油器上应装滤网;5)油箱的箱壁应涂耐油防锈涂料。油箱的容积可以按照下列经验公式进行计算: V (45)式中 V油箱的有效容积/L;液压泵的总额定流量/; 与系统压力有关的经验系数:低压系统取=24,中压系统=57,高压系统取=1012,对对于行走机械取或经常间断作业的设备,系数取较小值;对于安装空间允许的固定机械,或需藉助油箱顶盖安装液压泵及电动机和液压阀集成装置时,系数可适当取较大值。本设计取=6,将数值代如公式(4-5)得: V614 84 L5 液压系统性能验算5.1液压系统压力损失验算由于系统的管路布置尚未具体确定,整个系统的压力损失无法全面的计算,故只能先估算阀类元件的压力损失,待设计好管路布置图后,加上管路的沿程损失和局部损失即可。5.1.1工位夹紧缸的压力损失验算在油缸夹紧时,油液依次经过单向阀,叠加式减压阀,叠加式溢流阀,电磁换向阀,叠加式双单向节流阀,。所以进油路上的压力损失为 (51) =0.0009MPa式中 总的压力损失; 各种阀的压降; 流经阀的设计流量; 阀的额定流量。在油缸松开时,退油路上的压力损失为) 0.0097MPa由此可以看出,系统阀的压力损失都小于原先的估计值,所以满足系统的使用要求。因为工位夹紧缸的运动过程是一样的,使用对此油缸的压力校验过程和上面的计算过程是一样的。如下所示在油缸夹紧时,油液依次经过单向阀,电磁换向阀,叠加式双单向阀,叠加式双单项节流阀。进油路上的压力损失为: =0.017MPa在油缸松开时,退油路上的压力损失为:0.2Mpa由此看出各种阀同样满足使用要求。5.2 估算系统效率由表4-2和4-3可以看出,本液压系统在整个工作循环过程中,液压缸夹紧是主要的工作过程,所以系统效率、发热和温升等可一概用夹紧时的数值计算。系统效率的计算公式为: (52)式中 执行元件的负载压力; 执行元件的负载流量; 液压泵的供油压力; 液压泵的供油流量。工位夹紧缸夹紧时,将数值代如公式(5-2)得: 0.06工位夹紧缸夹紧时,将数值代入公式(5-2)得: 0.27系统在一个完整的循环周期内的平均回路效率可按下式计算: (53)式中 一个周期的平均回路效率; 各工作阶段的液压回路效率; 各个工作阶段的持续时间;T一个完整循环的时间。分别将、工位夹紧缸夹紧时的数值代入公式(5-3)得: 0.073则系统的总效率为: (54)式中 液压泵的总效率,取0.85;液压回路的效率;液压执行元件的总效率,取0.95。所以: 0.850.950.073 0.06本系统的效率是0.06。整个系统的效率很低,主要是由于溢流损失和节流损失造成的。5.3 系统的发热和温升 液压系统的压力、容积和机械损失构成总的能量损失,这些能量损失都将转化为热量,是系统的油温升高,产生一系列不良的影响。为此,必须对系统进行发热和温升计算,以便对系统温升进行控制。可按下式估算系统的发热能量: H(1) (55)式中 H系统产生的热量;液压泵的输入功率。将数值代入公式(5-5)得: H 1264w表5-1各种机械允许油温 Tab.5-1 The allowing temperature of the Machinery 液压设备类型正常工作温度/最高允许温度/数控机床30505570一般机床30555570机车车辆40607080船舶30608090冶金机械、液压机40706090工程机械、矿山机械50807090液压系统中产生的热量,由系统中各个散热面散发至空气中,其中油箱是主要散热面。因为管道的散热面相对较小,且与其自身的压力损失产生的热量基本平衡,故一般滤去不计。当只考虑油箱散热时,其散热量可按下式计算: KA (56)式中 K散热系数(),计算时可选用推荐值:通风很差K8;通风良好 K1420;风扇冷却时,K2025;用循环水冷却时,K110175; A油箱散热面积; 系统温升。当系统产生的热量H等于其散发出去的热量时,系统达到平衡,此时: H/KA当六面体油箱长、宽、高比例为1:1:11:2:3 且液面高度是油箱高度的0.8倍时,其散热面积的近似计算公式为: A=0.056所以可以导出: (57)式中 V油箱的有效容量。取散热系数K=15,将数值代入公式(5-7)得: 67.6此温升超过了许用范围,3050,增大油箱面积,取V814112L,并且取系数K=20,重新带入数值计算得: 41.8所以满足了许用温升要求。至此,系统校核完毕,从整个过程来看,此设计满足使用需求。6 液压动力源装置的设计液压动力源(即液压泵站)是多种元、附件组合而成的整体。是为一个或几个系统存放一定清洁度的工作介质,并输出一定压力、流量的液体动力,兼作整体式液压站安放液压控制装置基座的整体装置。,液压动力源是整个液压系统或液压站的一个重要部件,其设计质量的优劣,对液压设备性能关系很大。6.1 液压泵站的结构形式液压泵站上泵组的布置方式分成上置式和非上置式。泵组置于油箱上的上置式液压泵站中,采用立式电动机并将液压泵置于油箱之内时,称为立式(图6-1);采用卧式电动机时称为卧式(图6-2)。非上置式液压泵站中,泵组与油箱并列布置的为旁置式(图6-3);泵组置于油箱下面时为下置式(图6-4); 图6-1 图6-2 Fig.6-1 Fig.6-2 图6-3 图6-4 Fig.6-1 Fig.6-1按泵组流量特性分为定量型和变量型;按泵组驱动方式分为电动型、机动型和手动型。本设计采用上置式液压动力源,即泵组布置在油箱之上的动力源,当电动机卧式安装,液压泵置于油箱之上时,称为卧式液压动力源。当电动机立式安装,液压泵置于油箱内时,称为立式液压动力源。上置式液压动力源站地面积小,结构紧凑,液压泵置于油箱内的立式安装动力源,噪声低且便于收集漏油。这种结构在中、小功率液压站中被广泛采用。本次设计即采用这种结构。当采用卧式动力源时,由于液压泵置于油箱之上,必须注意各类液压泵的吸油高度,以防液压泵进油口产生过大的真空度,造成吸空或气穴现象。而立式安装的动力源则可避免这种情况的发生。7 液压装置的总体配置液压装置按其总体配置分为分散配置型和集中配置型两种主要结构类型。集中配置型液压装置通常是将系统的执行器安放在主机上,而将液压泵及其驱动电机、辅助元件等独立安装在主机之外,即集中设置所谓液压站。液压站按控制装置位置和液压站功能分为动力型和复合型。其中复合型又分为整体式和分离式;按液压站规模分为单机型、机组型和中央型;按通用化程度分为专用型和通用型。本次设计采用复合型整体液压站设计。复合型液压站是将系统中液压泵及其驱动电机、油箱及其附件、液压控制装置及其他辅助元件等均安装在主机之外,系统的执行器仍然安装在主机上。复合型液压站不仅具有向执行器提供液压动力的功能,同时还兼具控制调节功能。按照液压控制装置是否安装在液压泵站上,此种液压站又可进一步分为整体式液压站和分离式液压站。整体式液压站是将液压控制装置及蓄能器等均安装在液压泵站上;而分离式液压站则是将液压泵及其驱动电动机和油箱及其附件、液压控制装置和蓄能器等分装成液压泵站、液压阀站和蓄能器站等几部分。液压站的优点是外形整齐美观,便于安装维护,便于采集和检测电液信号以利于自动化,可以隔离液压系统震动、发热等对主机精度的影响。7.1液压控制阀的块式集成集成式配置:目前液压系统大多数都采用集成形式。它是将液压阀件安装在集成块上,集成块一方面起安装底板作用,另一方面起内部油路作用。这种配置具有可简化设计;设计灵活、更改方便;易于加工、专业化程度高;结构紧凑、装配维护方便;系统运行效率较高的特点。块式集成的主要缺点是集成块的孔系设计和加工容易出错,需要一定的设计和制造经验。 7.2集成块设计1)块体结构 集成块的材料一般为铸铁或锻钢,低压固定设备可用铸铁,高压强振场合要用锻钢。块体加工成正方体或长方体。通常其四周除1面安装通向液压执行器(液压缸或液压马达)的管接头外,其余3面安装标准的板式液压阀及少量的叠加阀或插装阀,这些阀之间的油路联系由油路块内部的通道孔实现,块的上下两面为块间叠积结合面。比较简单的液压系统,其阀件较少,可安装在同一个集成块上。如果液压系统复杂,控制阀较多,就要采取多个集成块叠积的形式。如果系统为比较复杂的液压系统,各种阀可安装在相互叠积的集成块上,上下面一般为叠积接合面,钻有公共压力油孔P,公用回油孔T,泄漏油孔L和4个用以叠积紧固的螺栓孔。P孔,液压泵输出的压力油经调压后进入公用压力油孔P,作为供给各单元回路压力油的公用油源。T孔,各单元回路的回油均通到公用回油孔T,流回到油箱。L孔,各液压阀的泄漏油,统一通过公用泄漏油孔流回油箱。2)集成块结构尺寸的确定 外形尺寸要求满足阀件的安装,孔道布置及其他工艺要求。为减少工艺孔,缩短孔道长度,阀的安装位置经仔细考虑,使相通油孔尽量在同一竖直面上,一定要保证三个公用油孔的坐标相同,使之叠积起来后形成三个主通道。各通油孔的内径要满足允许流速的要求,具体参照管径的大小确定孔径,与阀直接相通的孔径应等于所装阀的油孔通径。集成块设计应注意几个方面: a阀的选型安装尺寸; b 整机的结构及管路的布局,应按美观、管路弯道少、管路顺畅的原则选择阀板上的接管的位置; c 根据a、b两点进入阀体的具体设计; d 设计时应注意压力孔壁厚的选择,实际情况依压力情况及阀板材料而定; e 另外要注意钻阀板时工艺要求,例如细长孔钻头的偏摆误差等; f 阀板阀的安装面粗糙度要求及相交孔毛刺清除等; g 接头孔间距要求以防两接头干涉等现象均是设计阀板时应注意的。对于中低压系统,油孔之间的壁厚,不得小于5mm,高压系统应更大些。本系统属于中低压系统,不得小于5mm。8 液压系统的污染控制统计资料表明,液压系统的故障约有80%以上是因为液压油液污染所造成,所以液压站中的污染控制十分重要。8.1污染物的形态和来源在液压系统的工作油液中,凡是油液成分以外的任何物质都认为是污染物。油液中的污染物主要有固体颗粒物、水、空气、微生物、各种化学物质以及系统中以能量形式存在的静电、热能、放射能及磁场。 污染物的主要来源有以下3个方面:1)系统内部残留如液压元件、油路块、管道加工和液压系统组装过程中未清除干净而残留的型砂、金属切削、焊渣、尘埃、锈蚀物和清洗溶剂等。2) 系统外界侵入 如通过油箱呼吸孔和液压缸活塞杆侵入的固体颗粒物和水分,以及注油和维修过程中带入的污染物等。3) 系统内部生成 如各类元件磨损产生的磨粒和油液氧化及分解产生的有害化学物质等。8.2油液污染对液压系统的危害 不同的污染途径和污染物形态对液压系统造成的具体危害不尽相同。1) 颗粒污染物堵塞和淤积,引起元件故障 油液中各种颗粒污染物在滑阀间隙逐渐淤积会引起滑阀卡阻故障;会使液压元件中的阻尼小孔或节流小孔堵塞造成元件作用失灵等。颗粒污染物堵塞和淤积,会破坏油液缸的活塞组件间的密封,使高低压腔串腔破坏速度稳定性或出现爬行及振动等等。2) 加剧磨损,导致元件性能衰降 污染引起的磨损有固体颗粒磨损、腐蚀磨损和气蚀磨损等3种。而固体颗粒磨损是污染磨损的主要形式,其中包括切削磨损、疲劳磨损、粘滞磨损和冲蚀磨损。污染磨损是导致元件性能衰降的主要原因。3) 加速油液性能劣化液压系统油液的污染还会导致油液本身物理化学性能的劣化。8.3污染控制措施针对不同的污染物来源要采取不同的措施。对于加工、组装过程中的系统内部残留污染物,主要靠清洗和冲洗加以清除,同时要从设计方面消除那些不利于清洗和冲洗的因素。对于外界侵入污染物,主要是加强防护。而对于工作中生成的污染物,主要靠过滤与分离加以清除。表8-1 控制污染的措施Tab.8-1 The measure of pollution control污染来源控制措施残留污染物 液压元件制造过程中要加强各工序之间的清洗、去毛刺,装配液压元件前要认真清洗零件。加强出厂试验和包装环节的污染控制,保证元件出厂时的清洁度并防止在运输和储存中被污染 装配液压系统之前要对油箱、管路、接头等彻底清洗,未能及时装配的管子要加护盖密封 在清洁的环境中用清洁的方法装配系统 在试车之前要冲洗系统。暂时拆掉的精密元件及伺服阀用冲洗盖板代之。与系统连接之前要保证管路及执行元件内部清洁侵入污染物 从油桶向油箱注油或从中放油时都要经过过滤装置过滤 保证油桶或油箱的有效密封 从油桶取油之前先清除桶盖周围的污染物 加入油箱的油液要按规定过滤。加油所用器具要先行清洗 系统漏油未经过滤不得返回油箱 与大气相通的油箱必须装有空气过滤器,通气量要与机器的工作环境与系统流量相适应。要保证过滤器安装正确和固定紧密。污染严重的环境可考虑采用加压式油箱或呼吸袋 防止空气进行系统,尤其是经泵吸油管进入系统。在负压区或泵吸油管的接口处应保证气密性。所有管端必须低于油箱最低液面。泵吸油管应该足够低,以防止在低液面时空气经旋涡进入泵 防止冷却器或其他水源的水漏进系统 维修时应严格执行清洁操作规程生成污染物 要在系统的适当部位设置具有一定过滤精度和一定纳污容量的过滤器,并在使用中经常检查与维护,及时清洗或更换滤芯 使液压系统远离或隔绝高温热源。设计时应使油温保持在最佳值,需要时设置冷却器 发现系统污染度超过规定时,要查明原因,及时消除 单靠系统在线过滤器无法净化污染严重的油液时,可使用便携式过滤装置进行系统外循环过滤 定期取油样分析,以确定污染物的种类,针对污染物确定需要对哪些因素加强控制 定期清洗油箱,要彻底清理掉油箱中所有残留的污染物基于上述原因,除了在液压系统动力源装置设计中,在有关管路或元件前设置过滤器、在油箱顶盖设置通气过滤器外,还应在各连接面间采取适当的密封措施。对于工作在高粉尘环境下的液压装置,建议在液压站上加设防尘器(罩);对于大型冶金设备的中央型液压装置,建议将液压站安放在专门的地下室内,以防止污物侵入。8.4油液的过滤在防止污染物侵入油液的基础上,对系统残留和生成的污染物进行强制性清除非常重要。而对油液进行过滤是清除油液中污杂物最有效的方法。过滤器可根据系统和元件的要求,可分别安装在系统不同位置上,如泵吸油管、压力油管、回油管、伺服阀的进油口及系统循环冷却支路上。控制油液中颗粒污染物的数量,是确保系统性能可靠、工作稳定,延长使用寿命最有效的措施,选择过滤器时,需考虑以下几个方面的问题:1)过滤精度应保证系统油液能达到所需的污染度等级;2)油液通过过滤器所引起的压力损失应尽可能小;3)过滤器应具有一定纳污容量,防止频繁更换滤芯。9 液压系统泄露控制与密封9.1泄露及其危害液压装置的油液,如果由于某种原因越过了边界,流至其不应去的其他容腔或系统外部,称为泄露。从元件的高压腔流到低压腔的泄露称为内泄露,从元件或管路中流到外部的泄露为外泄露。按照泄露机理不同,有缝隙泄露、多孔隙泄露、粘附泄露和动力泄露等多种形式。泄露是长期以来影响和制约液压技术使用、声誉和发展的重要问题。因为泄露不仅浪费油液,污染环境,而且会降低系统的容积效率,影响系统的正常工作。液压系统外泄漏的主要部位及原因: 1)管接头和油塞,管接头漏油大多数发生在集成块、阀底板、管式元件等与管接头联接部位上,当管接头采用公制螺纹连接,螺孔中心线不垂直密封平面,即螺孔的几何精度和加工尺寸精度不符合要求时,会造成组合垫圈密封不严而泄漏。锥管螺纹连接时螺纹与螺堵之间不能完全吻合极易漏油。以上两种情况一旦发生很难根治,只能借助液态密封胶或聚四氟乙烯生料带进行填充密封; 2)板式阀、叠加阀等接合面间的漏油主要是:与O形圈安装面磕碰、划伤、安装螺钉长、强度不够,都会产生漏油。解决办法:针对以上问题分别进行处理; 3)造成液压缸漏油的原因较多,如活塞杆表面粘附粉尘泥水、盐雾、表面磕碰伤、偏载等原因都会造成密封损伤、失效引起漏油。解决的办法尽量不要使液压缸承受偏载,经常擦除活塞杆上的粉尘,注意避免磕碰、划伤,搞好液压油的清洁度管理;4)温升发热造成较严重的泄漏现象,可使油液粘度下降或变质,使内泄漏增大;温度继续增高,会造成密封材料受热后膨胀增大摩擦力,使磨损加快,使轴向转动或滑动部位很快产生泄漏。O形圈膨胀和变形造成热老化,冷却后不能恢复原状,失去弹性而失效,逐渐产生渗漏;定期检查、定期维护、及时处理是防止泄漏、减少故障最基本保障。 9.2 液压系统防漏与治漏的主要措施1)尽量减少油路管接头及法兰的数量,在设计中广泛选用叠加阀、插装阀、板式阀,采用集成块组合的形式,减少管路泄漏点,是防漏的有效措施之一;2)将液压系统中的液压阀台安装在与执行元件较近的地方,可以大大缩短液压管路的总长度,从而减少管接头的数量;3)液压冲击和机械振动直接或间接地影响系统,造成管路接头松动,产生泄漏。液压冲击往往是由于快速换向所造成的。因此在工况允许的情况下,尽量延长换向时间,即阀芯上设有缓冲槽、缓冲锥体结构或在阀内装有延长换向时间的控制阀。液压系统应远离外界振源,管路应合理设置管夹,泵源可采用减振器,高压胶管、补偿接管或装上脉动吸收器来消除压力脉动,减少振动;4)定期检查、定期维护、及时处理是防止泄漏、减少故障最基本保障。9.3液压装置泄露控制的基本准则1) 正确设计a 根据对主机的工作要求和工作环境等,正确、合理地设计液压系统和液压装置,采取必要的防漏措施、增设必要的防漏结构;b 尽量选用密封性好的液压元件并尽量减少管件等连接部位的数量;c 正确选用密封装置及合适的密封件及密封件材料。密封部位的沟、槽、面的加工尺寸和精度、粗糙度应严格符合有关规范要求;d 正确选用管接头、管材和连接螺纹;e 合理布置液压管路系统;f 根据液压系统的环境温度及工况,合理选择温控装置;g 采取必要的放冲击、振动和噪声措施。2)正确加工和装配a 油路块上液压阀的安装面应平直;密封沟槽的密封面要精加工,杜绝径向划痕。液压阀与油路块的连接及油路块间的连接预紧力应足以防止表面分离;b 正确制定液压装置的装配工艺文件,并严格按装配工艺执行;c 保持液压元件及附件、密封件和管件的清洁;d 不宜将各街头拧的过紧;e 避免在装配过程中损坏密封件;f 系统装配完毕,要试车检查,观察系统各部位有无泄露;g 正确维护保养;h 保持系统清洁,防止系统污染;I 液压系统中的过滤器堵塞后要及时清洗或更换滤心;j 维修液压系统、拆修液压元件时,应保持维修部位的清洁。维修完毕后,各连接部位应紧固牢靠。9.4 密封装置的选择 通过上述要求和要点以及本次所设计液压站的特点,选择O型密封圈作为本液压站的主要密封装置。O型密封圈是一种截面为圆形的橡胶圈,其材料主要为丁氰橡胶或氟橡胶。O型密封圈是液压与气压传动系统使用最广泛的一种密封件。它主要用于静密封和往复运动密封。其使用速度范围以便为0.0050.3m/s。 O型密封圈与其他形式密封圈比较,具有以下优点: 1)结构小巧; 2)静、动密封均可使用; 3)动摩擦阻力比较小; 4)使用单件O型密封圈,可对两个方向起密封作用; 5)价格低廉。10 液压系统噪声的控制噪声是公害,它不仅使人感到烦躁,也使大脑产生疲劳,降低工作效率,还会因未及时听清报警信号而造成工伤事故。液压系统产生的噪声对系统本身的工作性能影响较大,它往往与振动同时发生,会造成较严重的压力振摆,致使系统无法正常工作,降低零件的使用寿命。液压系统产生噪声的因素较多,如冲击噪声、压力脉动噪声、气穴噪声、元件噪声等。在液压系统噪声中,70%左右是由液压泵引起的。液压泵输出功率越大,转速越高或泵内的空气量吸入越多,噪声就越大;液压换向冲击产生的噪声也往往会引起管路振动及油箱的共鸣。采取如下措施可降低液压系统的噪声:1)设计中选用低噪声泵及元件,降低泵的转速;2)采用上置式油箱、改善泵吸油阻力,排除系统空气,设置泄压回路,延长阀的换向时间,使换向阀芯带缓冲锥度或切槽,采用滤波器,加大管径,设置蓄能器等;3)采用立式电动机将液压泵侵入油液中,泵进出口采用橡胶软管,泵组下设置减振器,管路中使用管夹,采用隔声、吸声等措施控制噪声的传播。11液压介质的选择液压油用于液压传动系统中作中间介质,起传递和转换能量的作用,同时还起着液压系统内各部间件的润滑、防腐蚀、冷却、冲洗等作用。11.1液压油的主要性能1)合适的粘度,良好的粘温特性 粘度是选择液压油时首先考虑的因素,在相同的工作压力下,粘度过高,液压部件运动阻力增加,升温加快液压泵的自吸能力下降,管道压力降和功率损失增大;若粘度过低,会增加液压泵的容积损失,元件内泄漏增大,并使滑动部件油膜变薄,支承能力下降;2)良好的润滑性(抗磨性) 液压系统有大量的运动部件需要润滑以防止相对运动表面的磨损,特别是压力较高的系统,对液压油的抗磨性要求要高得多; 3)良好的抗氧化性 液压油在使用过程中也会发生氧化,液压油氧化后产生的酸性物质会增加对金属的腐蚀性,产生的油泥沉淀物会堵塞过滤器和细小缝隙,使液压系统工作不正常,因此要求具有良好的抗氧化性;4)良好的抗剪切安定性 由于液压油经过泵、阀节流口和缝隙时,要经受剧烈的剪切作用,导致油中的一些大分子聚合物如增粘剂的分子断裂,变成小分子,使粘度降低,当粘度降低到一定的程度油就不能用了,所以要求具有良好的抗剪切性能;5)良好的防锈和防腐蚀性 液压油在使用过程中不可避免地要接触水分和空气以及氧化后产生的酸性物质都会对金属生锈和腐蚀,影响液压系统的正常工作;6)良好的抗乳化性和水解安定性 液压油在工作过程中从不同途径混入的水分和冷凝水在受到液压泵和其他元件;7)良好的抗泡沫性和空气释放性 在液压油箱里,由于混入油中的气泡随油循环,不仅会使系统的压力降低,润滑条件变坏,还会产生异常的噪音、振动,此外气泡还增加了油与空气接触的面积,加速了油的氧化,因此要求液压油具有良好的抗泡沫性和空气释放性;8)对密封材料的适应性 由于液压油与密封材料的适应性不好,会使密封材料膨胀、软化或变硬失去密封性能,所以要求液压油与密封材料能相互适应。11.2液压油的质量要求工程机械的液压系统中油液的流速不大而压力较高,故称为静压传动。液压油质量的优劣将在很大程度上影响液压系统的工作可靠性和使用寿命。通常对液压油的质量要求有如下几点:l)适宜的粘度及良好的粘温性能,以确保在工作温度发生变化的条件下能准确、灵敏地传递动力,并能保证液压元件的正常润滑;2)具有良好的防锈性及抗氧化安定性,在高温高压条件下不易氧化变质,使用寿命长;3)具有良好的抗泡沫性,使油品在受机械不断搅拌的工作条件下,产生的泡沫易于消失八以使动力传递稳定,避免液压油的加速氧化;4)良好的抗乳化性,能与混入油中的水迅速分离,以兔形成乳化液导致液压系统金属材质的锈蚀和降低使用效果;5)良好的极压抗磨性,以保证液压油泵、液压马达、控制阀和油缸中的摩擦副在高压、高速苛刻条件下得到正常的润滑,减少磨损。 除上述基本质量要求外,对于一些特殊性能要求的液压油尚有特殊的要求。如低温液压油要求具有良好的低温使用性能;抗燃液压油要求具有良好的抗燃性能;抗银液压油可用于有银部件的液压系统。11.3液压油的选用液压介质应具有适宜的黏度和良好的粘温特性;油膜强度要高,具有较好的润滑性能;能抗氧化,稳定性好;腐蚀作用小,对涂料、密封材料等有良好的适应性;同时液压介质还应该具有一定的消泡能力。选择液压介质时,除专用液压油外,首先是介质种类的选择。根据液压系统对介质是否有抗燃性的要求,决定选用矿油型液压油或抗燃性液压油。综上所述,考虑到本液压系统的使用环境和压力大小,本系统所选择的液压油为YB-46号液压油作为本系统的液压介质。其主要性能如下:运动粘度2750.6mm2/s,粘度指数90,闪点170,凝点-25,油的密度为= 918 kg/m3 。12 液压系统安装、调试、维护和检修12.1 液压系统的安装 在设计结束并且专用件、外购件和标准件全部齐全后,第一步需要做的就是按照图纸对液压站进行装配。在装配前需要做以下几个准备工作:1)需装配液压系统的液压件必须在循环冲洗合格后,方可进入装配状态;2)液压驱动的主机设备全部安装完毕,运动部件状态良好并经检查合格后,进入装配状态;3)控制液压系统的电气设备及线路全部安装完毕并检查合格;4)熟悉调试所需技术文件,如液压原理图、管路安装图、系统使用说明书、系统调试说明书等。根据以上技术文件,检查管路连接是否正确、可靠、选用的油液是否符合技术文件的要求,油箱内油位是否达到规定高度,根据原理图、装配图认定各液压元器件的位置;12.1.1在液压系统中安装液压元件时的注意事项1)液压元件安装前,要用煤油清洗,自制的重要元件应进行密封和耐压试验,试验压力可取工作压力的2倍,或取最高使用压力的1.5倍。试验时要分级进行,不要一下子升到试验压力,每升一级检查一次;2)方向控制阀应保证轴线呈水平位置安装;3)板式元件安装时,要检查进出油口处的密封圈是否合乎要求,安装前密封圈应突出安装平面,保证安装后有一定的压缩量,以防泄漏;4)板式元件安装时,固定螺钉的拧紧力要均匀,使元件的安装平面与元件底板平面能很好地接触。12.1.2在液压系统中安装液压泵时的注意事项1)液压泵传动轴与电动机驱动轴同轴度偏差小于0.1MM,一般采用挠性联轴节联结,不允许用V带直接带动泵轴转动,以防泵轴受径向力过大,影响泵的正常运转;2)液压泵的旋转方向和进、出油口应按要求安装;3)各类液压泵的吸油高度,一般要小于0.5M。12.2液压系统调试1)确认液压系统净化符合标准后,向油箱加入规定的介质。加入介质时一定要过滤,滤芯的精度要符合要求,并要经过检测确认;2)检查液压系统各部,确认安装合理无误;3)向油箱灌油,当油液充满液压泵后,用手转动联轴节,直至泵的出油口出油并不见气泡时为止。有泄油口的泵,要向泵壳体中灌满油;4)放松并调整液压阀的调节螺钉,使调节压力值能维持空转即可。调整好执行机构的极限位置,并维持在无负载状态。如有必要,伺服阀、比例阀、蓄能器、压力传感器等重要元件应临时与循环回路脱离。节流阀、调速阀、减压阀等应调到最大开度;5)接通电源、点动液压泵电机,检查电源连线是否正确。延长启动时间,检查空运转有无异常。按说明书规定的空运转时间进行试运转。此时要随时了解滤油器的滤芯堵塞情况,并注意随时更换堵塞的滤芯;6)在空运转正常的前提下,进行加载试验,即压力调试。加载可以利用执行机构移到终点位置,也可用节流阀加载,使系统建立起压力。压力升高要逐级进行,每一级为1MPa,并稳压5分钟左右。最高试验调整压力应按设计要求的系统额定压力或按实际工作对象所需的压力进行调节;7)压力试验过程中出现的故障应及时排除。排除故障必须在泄压后进行。若焊缝需要重焊,必须将该件拆下,除净油污后方可焊接;8)调试过程应详细记录,整理后纳入设备档案;9)注意:不准在执行元件运动状态下调节系统压力;调压前应先检查压力表,无压力表的系统不准调压;压力调节后应将调节螺钉锁住,防止松动。12.2.1 调试前的检查1)根据系统原理图、装配图及配管图检查并确认每个液压缸由哪个支路的电磁阀操纵;2)电磁阀分别进行空载换向,确认电气动作是否正确、灵活,符合动作顺序要求;3)将泵吸油管、回油管路上的截止阀开启,泵出口溢流阀及系统中安全阀手柄全部松开,将减压阀置于最低压力位置;4)流量控制阀置于小开口位置。12.2.2 使用液压系统要注意的问题1)使用者应明白液压系统的工作原理,熟悉各种操作和调整手柄的位置及旋向等;2)开车前应检查系统上各调整手柄、手轮是否被无关人员动过,电气开关和行程开关的位置是否正常,主机上工具的安装是否正确和牢固等,再对导轨和活塞杆的外露部分进行擦拭,而后才可开车;3)开车时,首先启动控制油路的液压泵,无专用的控制油路液压泵时,可直接启动主液压泵;4)液压油要定期检查更换,对于新投入使用的液压设备,使用3 个月左右即应清洗油箱,更换新油。以后每隔半年至1 年进行清洗和换油一次;5)工作中应随时注意油液,正常工作时,油箱中油液温度应不超过60。油温过高应设法冷却,并使用粘度较高的液压油。温度过低时,应进行预热,或在运转前进行间歇运转,使油温逐步升高后,再进入正式工作运转状态;6)检查油面,保证系统有足够的油量;7)有排气装置的系统应进行排气,无排气装置的系统应往复运转多次,使之自然排出气体;8)油箱应加盖密封,油箱上面的通气孔处应设置空气过滤器,防止污物和水分的侵入。加油时应进行过滤,使油液清洁;9)系统中应根据需要配置粗、精过滤器,对过滤器应经常地检查、清洗和更换;10)对压力控制元件的调整,一般首先调整系统压力控制阀-溢流阀,从压力为零时开调,逐步提高压力,使之达到规定压力值;然后依次调整各回路的压力控制阀。主油路液压泵的安全溢流阀的调整压力一般要大于执行元件所需工作压力的10%-25%。快速运动液压泵的压力阀,其调整压力一般大于所需压力10%-20%。如果用卸荷压力供给控制油路和润滑油路时,压力应保持在0.3-0.6MPa范围内。压力继电器的调整压力一般应低于供油压力0.3-0.5Mpa;11)流量控制阀要从小流量调到大流量,并且应逐步调整。同步运动执行元件的流量控制阀应同时调整,要保证运动的平稳性。12.2.3 系统耐压试验液压系统耐压试验的主要目的是检查液压站的泄露强度。耐压试验应在管道冲洗合格、系统安装完毕,并经空转运行后进行。1)空载调试空载运转的目的是为耐压试验作准备,又是确保液压系统可靠运行的必要步骤,其注意事项如下:a 应使用液压系统规定的工作介质,并按设计规定的过滤精度进行过滤。b 空载运转前,除向油箱注油外,还应给液压泵注油。注入油箱的油液应达到规定的液位高度;向液压泵的进油口灌油时,应注意泵的旋转方向,并用手转动联轴器,直至泵的出油口不带气泡时为止;对于液压马达和有泄油口的液压泵,应通过漏油口给壳体内灌满油。c 空载运转时,应将系统中的司服阀、比例阀、液压缸和液压马达,用短路过渡板将其和循环回路隔离;蓄能器、压力传感器和压力继电器应拆去,接头用螺塞堵死,使这些元件脱离循环回路。d 空载运行时,溢流阀的控制压力须调至能维持油液循环时克服管道阻力的最低值;流量阀和减压阀应调至最大开度。e 驱动液压泵的电动机应点动启动。启动中,若系统没有压力,应检查电源是否接反;若压力急剧上升,则应检查溢流阀是否失灵,排除后继续点动起动电动机直到运转正常。f 空载运行过程中,应密切注视过滤器前后压差的变化,若压差增大则应随时冲洗或更换滤心;若油温过高,应检查原因并予以解决1)压力试验 空载运转合格后,即可对系统进行压力试验。压力试验除应遵守上述空载运转中的a、b、c 项外,还应注意如下事项:a 对于工作压力低于16MPa的液压系统,其试验压力为工作压力的1.5倍;对于工作压力高于16MPa但不高于25MPa的液压系统,其试验压力为工作压力的1.25倍;对于工作压力超过25MPa但不高于31.5MPa的液压系统,其试验压力为工作压力的1.15倍;b 压力试验中,应逐级升高压力,每升一级压力宜稳压23min,达到试验压力后,保压10min,然后降至工作压力,进行全面检查,以系统所有焊缝和接口处无漏油、管道无永久变形为合格;c 保障安全。压力试验期间,不得捶击管道,在试验区域5m范围内不得同时进行明火作业;如有故障需要处理,必须先卸压。12.3液压系统的维护和检修 优质的液压系统是针对无故障使用寿命上而设计的,它仅需要很少的维护。但少量的维护对于得到无故障工作非常重要。实践表明液压系统失效、损坏等多数是由于污染、维护不足和油液选用不当造成的。为保证液压系统处于良好的性能状态,并延长其使用寿命,应对其合理使用,并重视对其进行日常检查和维护。12.3.1液压站使用中的注意事项1)液压系统调试完毕后更新液压油,初次使用半年后应更换一次液压油,以后应根据液压油的污染情况及时更换,但最长不得超过一年;2)液压系统在运行过程中,应随时检查滤油器的滤油情况并及时清洗或更换,液压系统应长备易损件及元、辅件,以便在故障发生时及时处理;3)低温下,油温应达到20以上才准许顺序动作。油温高于60时应注意系统的工作情况;4)停机4h以上的设备,应先使液压泵空载运转5min,再起动执行器工作;5)不允许任意调整电气控制装置系统的互锁装置,随意移动各限位开关、挡块、行程撞块的位置;6)各种液压元、辅件未经主管部门同意,不准私自调节或拆换;7)液压站出现故障时,不准擅自乱动,应通知有关部门分析原因并排除。除上述几点外,还应按有关规定做好对各类液压件备件及液压油的管理工作。12.3.2检修液压系统时的注意事项 1)系统工作时及停机未泄压时或未切断控制电源时,禁止对系统进行检修,防止发生人身伤亡事故; 2)检修现场一定要保持清洁,拆除元件或松开管件前应清除其外表面污物,检修过程中要及时用清洁的护盖把所有暴露的通道口封好,防止污染物浸入系统,不允许在检修现场进行打磨,施工及焊接作业;3)检修或更换元器件时必须保持清洁,不得有砂粒、污垢、焊渣等,可以先漂洗一下,再进行安装;4)更换密封件时,不允许用锐利的工具,注意不得碰伤密封件或工作表面; 5)拆卸、分解液压元件时要注意零部件拆卸时的方向和顺序并妥善保存,不得丢失,不要将其精加工表面碰伤。元件装配时,各零部件必须清洗干净; 6)安装元件时,拧紧力要均匀适当,防止造成阀体变形,阀芯卡死或接合部位漏油; 7)油箱内工作液的更换或补充,必须将新油通过高精度滤油车过滤后注入油箱。工作液牌号必须符合要求; 8)不允许在蓄能器壳体上进行焊接和加工,维修不当可以造成严重事故。如发现问题应及时送回制造厂修理; 9)检修完成后,需对检修部位进行确认。无误后,按液压系统调试一节内容进行调整,并观察检修部位,确认正常后,可投入运行。13 结论在本次关于数控铣床两工位夹紧装置液压系统的毕业设计中,我通过查阅现有资料,应用液压传动的一般原理及液压系统的设计原理,进行了液压系统的功能原理设计、执行元件的选择、阀类元件的选型、集成块设计、密封及液压油的选择等工作。通过对液压系统的性能计算和校核使系统符合最初设计,能够完成设计要求。并在满足原有要求的情况下实现重量轻、体积小、成本低、效率高、结构简单、使用维护方便等的要求。本次的设计为小型液压站。在设计过程当中,由于实践经验和知识水平的不足,关于设计计算、结构设计以及校核等方面都会有不完善之处。在今后的工作学习中我会更加详尽的学习,提高设计的科学性和效率。使之更加完善,符合实际工程机械的要求。致谢本设计是在王慧老师的悉心指导和严格要求下完成的。在这期间老师给我提供了不少参考资料,在我设计遇到困难而无法继续做下去时老师给我耐心讲解,并且一讲就是几个小时。老师广博的专业学识、严谨的治学态度以及执着的事业追求使我受益匪浅,他严紧的科学作风和实事求是的科学态度给我留下了深刻的印象。在老师艰辛教导下,经过这短短几个月时间,我不仅学到了丰富的专业设计知识和技巧,更重要的是使我学到了科学研究的方法和态度。在这里我希望表达对老师最诚挚的感谢。同时也要感谢大连维乐机械制造有限公司的王建强工程师,在我设计的过程中给了我很多帮助。参考文献1 张利平.液压气动系统设计手册M.北京:机械工业出版社,1997.2 张利平.液压站设计M.河北科技大学教材,1999.3 张利平.现代机床液压站设计的结构选型M. 制造技术与机床,1999,(10).4 宋学义.袖珍液压气动手册M.北京: 机械工业出版社,1995.5 路甬祥.液压气动技术手册M.北京: 机械工业出版社,2002.6 杨培元.简明液压系统设计手册M.北京: 机械工业出版社,1994.7 陈松楷.机床液压系统设计手册M.广州: 广东高教出版社,1993.8 章宏甲.液压传动M.北京: 机械工业出版社,1993.9 官忠范.液压系统设计M.调节失误实例分析.北京:机械工业出版社,1995.10 曾祥荣.液压噪声控制M.哈尔滨:哈尔滨工业大学出版社,1998.11 陈 愈.液压阀M.北京:中国铁道出版社,1982.12 蒋志勤.机床液压传动教程M.徐州:中国矿业大学出版社,1988.13 蔡春源.新编机械设计手册M.沈阳:辽宁科学技术出版社,1993.14 张利平,刘青社.现代液压机开发中的液压系统设计M . 锻压机械,2002.15 张利平.液压系统设计压力的最佳化J.MM机械技术杂志(台湾),2002.16 张利平.近代液压技术的几个重要发展方向J.机械制造杂志,2001,8月号(第15卷第三期).17 Zhang Liping, Li Yingbo, Zhang Xiumin. Application Studies On Hydraulics & Pneumatics in The Development of Refrigerating Heat-Exch-Anger Pipe-Pieces Formin-Gequipment. Proceedings of ISFP 95. Shanghai Science & Technological Literature Publishers, 1995.18 Schneider R T. Dont Forget to Congsider Accumulators. Hydraulics & Pneumatics, Oct, 2001.19 Johnson P. Help Your Filters Save Money. Hydraulics & Pneumatics, Nov, 2001.20 Anthon Esposito. Fluid Power With Applications. New Jersey: Prent ice-Hall,1980.21 Northman Co, Ltd New Products Guide.附录A 译文随车液压起重机的控制摘 要:本文主要是描述随车液压起重机的控制过程。这篇论文分为五个部分:需求分析,液压系统以及存在的问题的分析,不同结构产生不同问题的分析,基于更加先进复杂电液比例控制阀的新技术的发展趋势的分析。本文的研究工作是和实际的工业相结合的,比纯粹的研究理论更有意义。关键字:随车液压起重机,控制策略,电液比例控制阀1.引言本文主要叙述的是对随车起重机控制系统的改进方法随车汽车起重机可以看成是一种大型柔性控制机械结构 。这种控制系统把操作人员的命令由机械结构变为执行动作。 这样定义这种控制系统是为了避免在设计它事产生模糊的思想这是一种通过人的命令把能量转化成机械动作的控制系统 。本文所写的就是这种控制系统。以这个目标为指导方针来分析怎样设计出新的控制系统。文章分为五个部分:1.分析这种控制系统必须据有易操作性,高强度,高效性,稳定性,安全性。2.分析目前这种操作系统所存在的问题。3.从不同的方面分析这种控制系统:不同的操作方式,不同的控制方法,不同的组织结构。4.介绍一种适合于未来工业的比较经济的新的控制系统。5.分析一种据有高性能,高效率,易控制等的比较好的控制系统。它将成为今后研究的比较经济高效的一种方案。2. 论文部分2.1 对控制系统必备条件的分析在一种新的操作系统开始正式投入工作之前,对这种控制系统据有严格的要求。对控制系统的影响有很多因素。例如:机械结构的可实行性因素,可操作性因素,效率因素,符合工业标准。 工业需求必须放在第一位。这与在控制系统中导管破裂保护和超载保护有同等的地位。其次稳定性要求也很重要;系统不稳定就没法正常工作。一旦稳定性要求得以确定,控制系统性能要求就可以进一步确定。机械结构决定了起重机的可操作性。机械机构是随车起重机中可以往复转动固有频率低的大型柔性结构。 为了防止起重机振动,必须使起重机在固有频率下工作,或者提高起重机的固有频率。如果它的固有频率太低或者太高,操作人员将无法给它进行操作。最后传动效率可以在工业标准,稳定性,执行机构确定的基础上得到最优的方案。2.2 对目前这种控制系统的分析在设计一种新的起重机之前,研究目前起重机存在的问题是很有必要的。当前液压随车起重机主要存在以下三个问题:1.不稳定性2.不经济性3.低效性2.2.1 不稳定性不稳定性是一个严重问题,他可能会损伤操作人员或者会是设备受到毁坏。当一个系统不稳定时通常产生严重振动。为了消除当前系统的不稳定性,设计人员既花费了很多时间来研究又花费了很多财力设计出更加复杂的机构。如图1所示为一种起重机,它适合于在高速下工作。但是为了可以安全的工作必须合理控制其运行速度。要提高它的控制速度又必须增加更加昂贵复杂的机械系统。液压系统的参数,如温度或压力同样影响系统的稳定性。一个参数合理的液压系统比一个设计参数不合理的液压系统稳定,为了使整个系统运行稳定,有时必须降低次要的参数值。2.2.2 不经济性目前的液压系统是纯液压的机械系统,因此如果用户想实现一个功能,他就必须买一个能使现这个功能的液压机械组件。因为大多数用户又不同的使用要求,要求同一个设备可以进行升级。这就意味着这些标准设备可以人为的改造,这就增加了组件升级费用。2.2.3 低效性液体在液压系统的两个液压缸之间流动时效率较低。这是因为大多数液压阀都是用一个阀心来控制两个节流口,由于这个链接不可能使阀芯两侧的压力相等,因此在流出端就产生一个与液流方向相反的背压力,同时也增加了流入端的压力。由激励源产生的这个背压力与阀芯两端的压力差成正比的,给油缸的实际压力没有被有效的作用在油缸上。例如,给液压缸的压力为1000psi/1600psi传到液压缸时就只有0psi/600 psi了。无论如何,这样的话,提供的电量必须高于有效电量,这些额外的电量就被白白的浪费了2.3 控制系统不同的控制方法目前主要用电液比例控制阀来控制液压阀的运动。然而对控制筒有不同的控制方法。电液比例控制阀对阀的关/开,公共汽车系统,电源的智能激励,泵的调节方案控制精度都较高。必须对这种系统的优缺点进行分析,找出合理的方案。2.4 近期方案即使这种十分新的系统最佳外形的布局已经得以证明是可行的,但是起重机制造商和配件商还不能立刻就接受这种技术。这是一个渐进的过程,所以提出了一种临时解决的方案。这种方案是由微型计算机和升缩机构组成。这种离合阀可使这种更加高效稳定的执行控制机构得以实现。微型计算机可以对阀进行柔性控制。可以把这些变量编入软件。这样就消除了制造商许许多多不同的变量问题。起重机制造厂家可以根据产品功能选择不同型号的液压阀。配件商也将不得不生产这种型号的阀,这样不仅降低了制造成本,而且使起重机的性能得到提高。2.5 更高效方案的分析这种分析依赖于不同布局结果,液压泵控制的区域决定将要用的控制方法,再依次对这个区域进行分析。不同的区域将用不同的方法探讨,用不同的刀具位置控制。3. 实验设备 本文的中心是研究发展中的经济型机械控制方案的可实现问题,更多重点是先进的实验结果。实验结果由两种方法获得。第一种是通过研究单自由起重机实验台获得,第二种是通过研究一台由丹麦一家起重机厂送给英国的一所军校的起重机获得。如图1所示图1系统实验台 左:单自由度起重机模型 右:随车起重机实物虽然目前这种升缩分离机构在生产商中没有被普遍接受,但是两分离阀将会被逐渐取代。如图2所示是一种幅度-脉冲变换液压缸,它是通过数字信息处理器/奔腾双信息处理器运行程序来控制液压阀的。由数字信号处理器运行控制代码,奔腾处理器来判断并提供图形用户界面。4. 当前工作4.1 直线轴流控法当今市场常见的直线流控器都需要压力补偿。压力补偿器可以使阀芯突然受压时保持恒定的压力。但是新增加的压力补偿器会使阀的结构比简单的随动阀更加复杂。另一种解决方法是用流控器测量阀的压力降来调整阀芯的位置来实现。这种想法虽然简单,但是由于压力传感器和微控器的费用比较高,想普遍运用于商品上是很难的。然而目前这种利用微控器和压力传感器的思想对于生产商来说是可以接受的。虽然依据方程来看很简单,但是要实现却很难。流控器的位置精度取决于位置传感器的精度压力传感器的精度。噪声会影响位置传感器和压力传感器的稳定性。采用延时控制可以消除影响稳定性的噪声,这样,超过阀的运行范围的特征值用就不能用柏努力方程计算,应用更复杂的方程来计算。图2升缩分离机构4.2 液压缸控制方法根据不同的受力方向和速度方向这种液压缸有四种工作情形。如图3所示:多数是普通的随动液压阀,它这种控制方法已经在文献中可以找到,依靠一般的测量法测液压缸的速度位移相当复杂。它们也需要相当复杂的运算法则来控制。本文主要分析基于简单的PI控制器和没有严格速度位移要求的液压缸的控制方法。这种系统的控制方法比复杂的控制方法简单得多,由于它不需要特殊的传感器而且容易被大多数工程师理解所以比较容易被厂商采用。在设计一种控制方法时另一种特别的控制方法也需要了解,它也是液控中常用的一种方法。移动液压阀要求低泄漏,以前的液压阀大们通常有很大的交迭。然而,使生产商能够接受的这种线轴式液压缸的驱动性能相当慢。这种具有很大交迭的重合以及激发很慢的液压阀很难满足现在的要求。交迭和较慢的驱动使压力控制变得相当困难。图3起重机工作的不同情形新的控制方法可以用一个例子清楚简单的描述出来。从入口端实行流控制,出口端就实现液压力。流控制符合柏努力方程。液压控制过程中PI控制器维持较小的压力来提高效率并且可以防止气穴现象。这些都是为了解决大交迭和较低的驱动所做的工作,压力控制器仅仅能排除控制中的一点问题。这就意味着如果控制人员想提高压力,却不能使液压缸移动,只能够降低控制口的开口量。这样做的作用只能使操作人员想改变活塞的方向时使它准时脱离零位。这种情况下外力方向和活塞运动仍然不能改变,这种方式需要改进。既然这样,需要压力控制器在出口变大时提供与外力方向相反的有用压力,当已知入口端的压力下降的时候,它可以增加与外力相反的压力。这个压力也受PI控制器控制,如图4所示就是是一个这种控制系统的控制模型结构。图4减压控制器在写本文的时候这种控制的实验已经在图1所示的实验台上完成了,由于起重机上安装了载荷单向阀,所以稳定性没有达到要求。然而,用液压单向阀取代这种载荷单向阀,可以使系统的稳定。在液压系统中,载荷闭式阀可以实现超载保护和卸载保护两种功能。由于在这种控制方法中使用伸缩阀机构对卸载保护很起作用,因此在起升机构中很有必要使用有这种功能的单向阀。一个操作单向阀的驾驶员可以做这一点,没有增加复杂的动力来阻止起重机的倾。安装了这种单向阀,起重机操作人员不需要再增加更复杂的外力来防止起重机产生倾翻。5. 结束语即使没有大量的实验设施,但是实验还是完成了,一个好的开始是成功的一半。这个论文题的大轮阔已经确定,它是有意义而且合理的。这个工作分为需求分析、目前的系统分析、不同布局分析、近期的解决办法的分析和最优解决方案的发展趋势分析五个部分。在本论题的最后,液压随车起重机的控制模将会被修改。6. 感谢语 感谢 Danfoss Fluid Power A/S为这个研究提供了部分基金。也感谢Hjbjerg Maskinfabrik (HMF) A/S愿意为这种起重机的测试提供技术上的支持随车液压起重机的轨迹控制问题描述这项方案是根据如图1所示的多自由度随车液压起重机控制问题提出来的。控制随车起重机要求操作人员技术相当高,它的操作机动范围很小。如果可以让现代的起重机实现遥控控制的话,操作人员只需要控制他手中的遥控器就可以控制起重机把重物放在他要求的任何地方。一个按钮控制一个自由度方向上的转动。因此只需要让操作人员得到熟练的训练他就可以每次控制更多的按钮来实现多个自由度的转动。吊具总成图1所示为一台随车液压装载起重机部分液压系统控制图实例这项工程的目标是设计一台非熟练操作人员都能够控制的移动式液压起重机。操作人员根据吊具总成的合成轨迹控制一根操纵杆。这样不同的自由度就可以同时被控制。图2测试起重机图片多数随车液压起重机的结构就像图1所示的那样,大多数都是非常柔性化的,因此当受载时它们就会弯曲。这样做可以使起重机吊重比最低。事实上吊重顶端位置也是制约控制系统结构偏差的因素。这种问题可以通过一个好的位置偏差补偿控制系统解决,这个系统还可以消除操作初期结构上发生的摆动。 继续使结构轨迹偏差补偿控制系统在起重机上进一步发展,起重机的装载能力将可以大大得到提高。当这种在起重机里的摆动可以被控制系统抑制的方法能够得到充分证明,在一个长的期限里可能有一个降低动力学安全系数的机会。这将使起重机生产商和用户节省一大笔费用。方案内容现以一台如图2所示的HMF 680-4型随车液压起重机来分析这些问题。在这台起重机的不同位置安装了传感器来监视系统上的不同参数值,它们都是一些起重机上很重要的不同连接位置的压力、流量、应变参数值。实验测试可以证实起重机性能,所以可以通过精确的模型来测试起重机的性能。为了使所含盖的几个问题能够描述得更清楚,这些问题被简略的表述如下:1. 分析系统要求说明书 系统的执行标准分析已被完成。基于系统的这种要求连同确保系统的执行的检验程序将被列入清单。2. 机械子系统模型 许多技术模型已经存在,因此这些部件包括研究明确的模型局部动力学的表达方法。机械子系统的分析与局部模型偏差的详细分析相同。这样做是为了使计算的有效性能够明确表达出来,同时使系统的动作在控制过程中能够十分精确。基于这种非常有前景的用公式表示一个数学子系统模型的方法已经完成,它将从起重机试验台的实验结果中得到校验。3. 液压子系统模型 跟机械子系统建模一样,液压子系统模型由液压泵、不同的液压阀、激励源和液压导管组成。然而,并不是这些都要建模,只是那些对系统动力学部件影响比较大的成分才建模。液压子系统模型也需要用实验的方法来证明。除此之外是否在对偏差进行补偿时,系统中用了比重比较大的电液比例控制阀都必须被分析,即对机械结构的摆动进行分析。基于上述修正,对液压系统如果有必要都要做。4.分析和标准的解决反转运动结构 起重机相对于底部有一个可以操作的特定空间,即吊具总成能达到的范围。这是公认的起重机工作范围。有的部位要通过不同的路线才可以达到。因此有必要在这些区域确定最佳的运动结构。有不同的参数标准,习惯上用起重机上总负荷的最小值,也就是在临界状态点的最小压力值。为了做这个重要的结构压力分析,基于实现这个运算法则的控制系统将进一步得到发展。5.载荷判断方案的发展 为了实现起重机结构偏转补偿,需要知道起重机承受的有效载荷。因此,有必要进行不同的载荷在线可能情况分析,这样就可以判断哪一个传感器需要进行载荷复合鉴定。基于这种鉴定方案分析,可以实现最终的运算法则。6. 控制运算法则的发展 基于这种机械液压子系统模型,一种吊具总成位置轨迹控制的控制规律将会得到发展。这种控制规律可以保证系统按照吊臂顶的运动轨迹运行,并且系统在工作情况下保持稳定。这包含在载荷判断和运动学最佳参数方案的分析中。7. 控制系统的执行 最后系统的控制规律已经通过仿真试验得出,应该实现通过处理器或者数据信号处理检验系统实物了,即测试起重机。用这种测试方法将可以实现对系统制定测试,到测试结束的整个过程。这种测试技术还可以对一些典型系统进行控制。机械化和自动化自从18世纪末工业革命开始,工业机械化进程一直在不断地发展,并且变得越来越复杂。但目前的工业自动化过程较以前的工业自动化过程有很大的不同。20世纪的工业自动化之所以有别于18、19世纪的机械化,是因为机械化仅应用于操纵(执行)机构,而自动化则涉及整个生产单元中的执行和控制两个(核心)部分。尽管不是所有的情况,但在大多数情况下,控制元件依然发挥着强大的力量,机械化已经代替了手工劳动,而自动化代替了脑力劳动。机械化程度的发展在过去和现在的区别不是很明显,而在一端是具有强大辨别和控制功能的饿电子计算机,另一端是我们目前所说的“转换机构”正如传输带一样与其他设备简单的连接起来。自动调整机构能够自动调节系统,也就是说,它能在没有人干预和调整的情况下,自动对系统或生产过程进行控制和调节。现代工业技术的核心因素就是当前人们经常提起的反馈(控制),它是以自动调节系统为基础,借助于系统偏差与期望之间的偏差来控制,可由自动检测、测量、显示和校正方法得到。反馈控制应用于高速运转的大型数字计算机进行复杂运算时,对于输入的复杂问题,计算机通常会一直运行,直到求出与问题匹配的结果。这或许于我们以前熟知的机器有很大的差别。同样的,反馈是我们所熟悉的机器概念。旧式的蒸汽机安装有离心传感器,控制杆上的两个小球不停的绕立轴旋转,气压升高,发动机转速变快,旋转控制器速度增加,使立杆上升,关闭阀门,切断蒸汽,从而发动机恢复到合适的速度。随着工业革命的出现,机械化也随之产生,由于这时的机械化仅局限于单个生产过程。因此,需要使用人工控制每部机器及装卸材料,并把材料从一个地方运到另一个地方。仅仅在很少的情况下,这些生产过程才能够自动地衔接起来,形成连续的产品生产线。一般而言,从20世纪20年代以来,尽管现代工业已经实现了高度机械化,然而通常机械化的部分还没有联系在一起。机械化的工厂生产了光电灯泡、瓶子和大量生产的产品的元件,这些机械化工厂的自动化程度日益得到了加强。20世纪40年代电子计算机的发展,意味着在机械控制领域内将出现大量比计算机更简单、更廉价的产品。这些装置机械装置、气动装置、液压装置,在近些年内已有了很大的发展,并将继续发展下去,普通的观点认为这有利于自动控制的发展。当然不仅仅电子设备对目前自动控制的发展举足轻重,无疑在今后自动控制发展方面还继续会发挥不可估量的作用。液压传动对于两点之间较远的传动,不适合用传动带和传动链的机械系统,可优先考虑采用液压传动,液压传动的优点是:低速大力矩、机构紧密、稳定性高、无振动的平稳滑动,速度和方向能灵活控制,输出速度可实现无级快速变化。由电力驱动的油泵提供有传递能量作用的油液,并可供给液压马达或油缸,从而将液压能转化成机械能。液压油流动是通过控制阀进行控制的,压力油的作用产生线性的或螺旋性的机械运动,此时的油液产生的动能相对低。因此,有时候使用静压传动。液压马达与液压泵的结构几乎是相同的,任何液压泵都可以当成马达应用,一定时间的流量可由调节阀使用变量泵来控制。一般来说液压传动可分为直线式的和旋转式的,旋转式传动产生旋转运动,而活塞及缸体部件产生往返的运动是线性运动。所有液压马达的功能基于同一个原理,压力油被交换地挤入、挤出到油腔中,进油循环由最小的腔体注油开始,当油腔达到最大容积时,油腔和油路隔开,停止进油,然后通过回油路油液返回到油箱中,同时另一个油腔开始进油。计算机辅助设计技术在广义上讲,计算机辅助设计(CAD)指的是计算机在解决设计问题中的应用。工程技术人员可以借助于直观显示屏幕、键盘、绘图仪和人机接口等诸多方式与计算机通信。工程技术人员可以提出问题并能很快有计算机得到解答。更确切地说,CAD是使工程技术人员和计算机系统工作,彼此发挥长处的技术。过去,工程技术人员设计时所使用的传统工具是制图板、制图仪、计算器和技术数据图纸。后来,计算机的出现导致了工业中的巨大变化。随着数字控制、计算机数字控制、机床的引入,计算机在制造业中的应用在20世纪50年代末期首次有了实质性进展,通过磁带输入到机器中的数据控制了装配零件的机器运转。这一切对工程设计者并没有直接影响。20世纪60年代初随着计算机辅助设计的引入产生了一场重大变革。CAD允许设计者以图形方式与计算机交互作用,工程技术人员能够检验一个设计思想,并很快地查看到设计效果,然后对其进行修改和重新评价。如此循环往复,直至形成一个合格的设计。每重复一次,设计方案都会得到一步的改善。因此,在时间、材料和资金允许的条件下所执行的循环次数越多,设计效果就越好。计算机能加快设计进程,提高设计的精确程度。它能够在短时间内完成大量的、复杂的计算并得出准确可靠的结果。由于在有限的时间内某些设计所需要的大量计算不能简单的由人来完成,计算机的上述特征证明了作为一个设计工具的作用是无法估量的。计算机可在磁盘或直接存储器等永久性介质上保存大量的信息。因此,以数字形式描述一个工程图纸的细目或一个汽车车身的造型,并把信息存储在存储器中都是可以做到的。这些数据能从存储器中检索、快速转换并显示在VDU(视频显示器)图形屏幕上,或交替地利用绘图仪绘制在图纸上。此外,设计者还可以迅速、容易地更新或修改图纸的任何部分。也能把修改后的图纸数据写回到存储器中。计算机辅助设计在工程技术领域中有着重要的作用,例如,计算机系统生成工程图纸的应用;求解复杂构件的热应力问题的有限元技术的使用;机械装置和连接的分析及大量的辅助工程应用。附录B 外文文献CONTROL OF MOBILE HYDRAULIC CRANESMarc E. MNZERAalborg UniversityInstitute of Energy TechnologyPontoppidanstrde 101DK-9220 Aalborg. DenmarkEmail: mmuniet. auc. dkThe goal of the thesis described in this paper is to improve the control of mobile hydraulic cranes. The thesis is split into five parts: a requirements analysis, an analysis of the current systems and their problems, an analysis of different possibiilities for system topologies, development of a new control system for the near future based on electro-hydraulic separate meter in / separate meter out valves, and finally an analysis of more advanced and complex solutions which can be applied in the more distant future. The work of the thesis will be done in cooperation with industry so the thesis will have more of an industrial focus than a purely theoretical focus.Key words: Mobile Hydraulic Cranes, Control strategies, Separate Meter-in/Separate Meter-out.1 INTRODUCTIONThe goal of the thesis described in this paper is to improve the control of mobile hydraulic cranes. A mobile hydraulic crane can be thought of as a large flexible mechanical structure which is moved by some sort of control system, The control system takes its input from a human operator and translates this command into the motion of actuators which move the mechanical structure.The definition of this control system is purposely left vague in order not to impose any constraints on its design. The control system consists of actuators which move the mechanical structure, a means of controlling the actuators, a means of supplying power to the actuators, and a way of accepting inputs from the operator. It is this control system which is the target of this thesis. The goal is to analyze the requirments made on the control system and present guidelines for the gesign of new control systems.The thesis will be split into five parts:1. Analysis of the requirements of the control system, from the perspective of the operator, the mechanical system, efficiency, stability, and safety requirements.2. Analysis of current control systems and what their problems are.3. Analysis of the different options for the control system: different types of actuators different types of control strategies, and different ways of organizing components.4. Presentation of a new type of control system, which is commercially implementable. A system that will meet the needs of industry in the near future.5. Analysis of more optimized systems, with higher performance, better efficiency, more flexible control, etc. This will be less commercially applicable but will be a starting point for more research.2 SECTIONS OF THE THESIS2.1 Requirements Analysis of the Control SystemBefore starting detailed work on developing new control systems, it is important to analyze what the exact demands are on the control system. The control system is influenced by many factors.For example: the mechanical structure it is controlling, the human operator, efficiency, stability, and industry requlations. Industry regulations are the first requirements that have to be addressed. Things like hose rupture protection and runaway load protection make a lot of demands on the control system. After regulations, stability is the next most important requirement; without stability the control system cant be used. Once stability has been assured, the performance requirements of the control system have to be set. They are determined by the mechanical structure of the crane and the human operator. The mechanical structure of a mobile hydraulic crane is a very necessary to keep the speed of the control system below this natural frequency or to develop a control system which can increase this frequency. The human operator also impossible limits on the control system. If the control system is too slow or too fast then it is impossible for a human operator to give it proper inputs. And finally, once the requlations have been met, stability is assured, and the performance is at the right level, the power efficiency of the control system has to be optimized.2.2 Analysis of Current Control SystemsBefore designing a new control system it is good to analyze the current control systems to find out what their problems are. Current control systems are mainly hydraulic and can suffer from three main problems:1. Instability2. High cost3. Inefficiency2.2.1 InstabilityInstability is a serious problem as it can cause injury to human operators or damage to equipment. When a system becomes unstable it usually starts to oscillate violently. To avoid instability in current systems, the designers either sacrifice certain functions which are desirable, or add complexity and cost. For example, in the crane shown in Figure 1, it would be desirable to have control over the speed. But due to the safety system that cranes are required to have, standard speed control is not stable. To add speed control requires a more complex and more expensive mechanical system. The parameters of a hydraulic system, such as temperature or load force, also affect stability. A system that is stable with one set of parameters might be unstable with another set. To ensure stability over the entire operating range of the system, performance must sometimes be sacrificed at one of the parameter range.2.2.2 High cost Current systems are purely hydraulic-mechanical, so if the user wants a certain function, the user buys a certain hydraulic-mechanical component. Because most user have different requirements, there are many different variations of the same basic component. This means that many specialized components must be manufactured rather than one standard product. This drives up the cost of components.2.2.3 InefficiencyOne form of inefficiency in current systems is due to the link between the flows of the two ports of the cylinder. This is because most valves use a single spool to control the flow in both ports. Because of this link, it is impossible to set the pressure levels in the two sides of the cylinder independently. Therefore, the outlet side will develop a back pressure which acts in opposition to the direction of travel, which increases the pressure required on the inlet side to maintain motion. Since the force generated by the actuator is proportional to the pressure difference between the two sides, the actual pressures in the cylinder dont affect the action of the cylinder. For example, the action of the cylinder for 0psi/600psi would be the same as 1000psi/1600psi. However, in the second case, the power supply would have to supply much more power. This extra power is wasted.2.3 Different Options for Control SystemsCurrent control systems use hydraulic actuators with directional/proportional valves to control the movement. However there are many different options for controlling a cylinder. Options range from new high performance electro-hydraulic valves, to separate meter in / separate meter out (SMISMO) valves, to hydraulic bus systems, to intelligent actuators with built in power supplies, to pump based control strategies. These systems all have advantages and disadvantages which need to be analyzed if the most optimum solution is to be chosen.2.4 Near Future Solution It is expected that even if it is proven that a completely new system topology is the optimum configuration, the crane manufacturers and component manufacturers will not accept the new technology overnight. This will most likely take time, so an interim solution will be developed. This solution will be made up of micro computer controlled Separate Meter In / Separate Meter Out (SMISMO) valves (Elfving, Palmberg 1997; Jansson, Palmberg, 1990; Mattila, Virvalo 1997). SMISMO valves will make it possible to implement new control strategies which are more efficient and stable. The micro computer will make it possible to introduce flexibility to valves. Variants can be programmed in software. This eliminates the need to manufacture hundreds of different variants. The crane manufacturer will be able to choose the exact functions he wants in his valve, while the component manufacturer will have to manufacture only one valve. This will lower the cost, even though the performance will have increased.2.5 Analysis of Higher Performance Solutions This analysis will depend on the results of the analysis of different topologies. If it is shown that pump based control is to be the way of the future for example, then analysis will be performed in this area. Another area which will also be explored, is tool position control.3 LABORATORY FACILITIESAs the focus of this thesis is on developing control strategies that can be implemented on commercial machinery, much emphasis will be placed on experimental results. Experimental results will be obtained from two systems. The first, a simple one degree of freedom crane, was designed as an experimental platform. The second is a real crane which was donated to the University by Hojbjerg Maskinfabrik (HMF) a Danish crane manufacturer. Refer to Figure 1.Figure 1 Experimental Systems in Laboratory. Left: One DOF crane model. Right: RealMobile Hydraulic CraneAs there are currently no commercially available separate meter-in/separate meter-out valves, two separate valves will be used instead. A sample circuit of one cylinder is shown in Figure 2. The control algorithms which control the valves, will be programmed on a Digital Signal Processor (DSP)/Pentium dual processor system. The DSP will run the control code and the Pentium will do diagnostics and provide a graphical user interface.Figure 2 Separate Meter In / Separate Meter Out Setup4 CURRENT WORK4.1 Flow Control by Direct Actuation of the Spool Most flow control valves on the market today work with a pressure compensator (Andersen; Ayers 1997). The pressure compensator keeps a constant pressure drop across the main spool of the valve, which keeps the flow constant. However, the addition of a pressure compensator makes the valve more complicated than a simple single spool valve. Another way of doing flow control is to measure the pressure drop across the valve and adjust the spool position to account for this (Back; Feigel 1990). This is not a new idea but has not been implemented commercially because of the high cost of pressure transducers and micro controllers. However, with the current drop in cost of micro controllers and pressure transducers this idea is now commercially feasible. The concept is very simple, spool position is calculated from the Bernoulli equation using the pressure drop across the spool and reference flow. Even though this is a simple equation, it is not easy to implement. The accuracy of the flow control is dependent on the precision of the position sensors and of the pressure transducers. Noise on the pressure or the position signals can cause stability problems. Filtering the noise, introduces delays in the control which can also affect stability. In addition the Bernoulli equation is not followed exactly over the entire operating range of the valve, so it may be necessary to store the valve characteristics as a data table or develop a more complex equation.4.2 Cylinder Control StrategyTo control a hydraulic cylinder, the strategy has to be able to handle four different situations depending on the directions of the load and the velocity of the cylinder. Refer to Figure 3.Figure 3 Different Situations in Crane Operation The control strategies that have appeared in the literature are usually quite complex and depend on measurements of the cylinder position and velocity (Elfving, Palmberg 1997; Mattila; Virvalo 1997). They are also based on rather complex control algorithms. It is the goal of this thesis to start with a control strategy which is based on simple PI controllers and makes no demands for position and velocity of the cylinder. The performance of this system will be lower than a complex control strategy, but it may be easier to implement commercially because it has no need for special sensors and is easier to understand for the average engineer. Another feature which needs to be acknowledged when designing a control strategy, is the type of valve used. Mobile hydraulic valves demand low leakage and since most mobile valves are spool valves, they usually have large overlaps. In addition, to make the cost of the valve acceptable to industry, the actuation stage on the spool is usually quite slow. This combination of large overlap and slow actuation makes it hard to implement many of the strategies that have been presented. Pressure control especially becomes difficult when there is an overlap and a slow actuator.One example of a new strategy which is simple and robust is described as follows. Flow control is implemented on the inlet side and pressure control is implemented on the outlet side. The flow control is based on the Bernoulli equation. Pressure control is done by PI controller which maintains a low constant pressure to increase the efficiency and prevent cavitation. To work around large overlaps and slow actuation stage, the pressure controller only does meter out control. This means that if the controller wishes to raise the pressure, it cant add flow to the cylinder, it can only decrease the opening of the meter out port. The benefit of this is that the only time that the spool has to cross the zero position is when the operator wishes to change the direction of motion of the cylinder. For the case where the load force and the velocity are in the same direction, this strategy has to be modified. In this case, the pressure reference of the pressure controller at the outlet is increased to a value which opposes the load force. The pressure reference is increased when it is noticed that the pressure of the inlet side is dropping. The pressure reference is also controlled by a PI controller. A schematic model of the controller system for the load lowering case is shown in Figure 4. At the time of writing this paper the initial experimental tests had performed on the real crane shown in Figure 1. Stability was not achieved because the crane is equipped with a load holding valve. However, the load holding valve will be replaced with a pilot operated check valve, which should make it possible to stabilize the system. In current systems, the load holding valve serves two functions, load holding and runaway load protection. Due to the use of a SMISMO valve setup, the runaway load protection is built into the control strategy, therefore the only function which is necessary for the load holding valve to perform is load holding. A pilot operated check valve will be able to do this, without adding complex dynamics which upset the stability of the system.Figure 4 Controller Strategy for Lowering of Load5 CONCLUSION Even though not much experimental work has been finished, a good start has been made and initial tests have been promising. The outline of the thesis has been developed and organized in a logical manner. The work is split into five parts, requirements analysis, analysis of current systems, analysis of different topologies, development of a near future solution, and development of a more optimum solution. At the end of the thesis, the control of mobile hydraulic cranes will have been improved.6 ACKNOWLEDGEMENTS This project is being funded in part by Danfoss Fluid Power A/S. The author would also like to thank Hojbjerg Maskinfabrik (HMF) A/S for the donation of the test crane.7 REFERENCESAndersen, B. R.; Ayres, J. L. (1997). Load Sensing Directional Valves, Current Technology and Future Development, The Fifth Scandinavian International Conference on Fluid PowerBack, W.; Feigel, H. (1990). Neue Mglichkeiten Beim Elektrohydraulischen Load-Sening, O+P lhydraulik und Pneumatik 34Elfving, M.; Palmberg, J. O. (1997). Distributed Control of Fluid Power Actuators-Experimental Verification of a Decoupled Chamber Pressure Controlled Cylinder, 4th International Conference on Fluid PowerJansson, A.; Palmberg, J. O. (1990). Separate Controls of Meter-in and Meter-Out Orifices in Mobile Hydraulic Systems, International Off-Highway and Powerplant Congress and Exposition Mattila, J.; Virvalo, T. (1997). Computed Force Control of Hydraulic Manipulators, 5th Scandinavian International Conference On Fluid PowerTrajectory Control of Mobile Hydraulic CraneEMSD 9/10 - 69CProblem DescriptionThis project takes its base in the problem of controlling mobile hydraulic cranes with multiple degrees of freedom, such as the one shown in figure 1. Controlling a mobile hydraulic crane takes a highly trained operator as it is often operated in areas with little space for maneuverability. Modern cranes are sometimes fitted with radio control so that if possible, the operator can be placed close at hand of where the load must be positioned. Still only one degree of freedom is controlled per button/handle. Therefore only if the operator has been sufficiently trained he/she may control two or more degrees of freedom at a time by operating more buttons.Figure1 Drawing showing a example of a hydraulic loader crane, for mounting on lorry. Only parts of the hydraulical system is sketched.The aim of this project is to develop a control system for a mobile hydraulic crane so that less training of the operator is needed. This is incorporated through trajectory control of the tool center of the crane by operating a joystick only. In this way multiple degrees of freedom are controlled simultaneously.Mobile hydraulic crane structures like the one depicted in figure 1 are normally also very flexible, i.e. they bend when they are loaded. This is due to highly optimized constructions regarding material usage, in order to keep the weight down. As it is the position of the tool center that is controlled the control system should also compensate for this structural deflection. This way by having an adequately good control system Which compensates for deflection, the system may also eliminate the possibilities for the operator to initialize oscillations in the structure.Making use of a trajectory control system with compensation for structural deflection will therefore expand the possibility of utilising the crane to its maximum regarding loading capability. In long term this may give the opportunity to lower the crane will be damped by the control system. All together this results in advantages for both manufacturer and end user advantages through a higher cost/capacity-ratio and a more easily controlled system.Project Contents The problem described will practically be delt with using a HMF 680-4 mobile hydraulic crane, a picture of this may be seen in figure 2. The crane is mounted with sensors for monitoring different parameters in the system, which are the most important pressures, flows, strains and relative link positions of the crane. This crane will be the basis for the experimental testing and verification, and therefore also for the mathematical models derived. In order to fulfil the above described problem several subjects has to be covered, in short these are:Figure 2 Picture of the text crane.1. Analysis and specification of the demands for the systemAn analysis of performance criterias for the system is to be made. Based on this demands for the system will be specified along with testing procedures for the system to ensure the system fulfil the demands.2. Modelling of the mechanical subsystem Many different modelling techniques exist, and therefore this part includes studying formulations methods for modelling multi-body dynamics. In particular an analysis of how to model the deflections in the mechanical subsystem should be made. The purpose is to arrive at a formulation which is computational efficient, but at the same timesufficiently accurate in describing the behaviour of the mechanical system, in order to include it in the control strategy. Based on the most promising formulation a mathematical model of the subsystem will be made, and it will be verified through experimental results obtained from the test crane.3. Modelling of the hydraulic subsystemAs well as mechanical system should be modeled, so shall the hydraulic subsystem, which consists of a pump, different valves, actuators and hoses. However, not all of these will be modeled, but only the components which have significant influence on the dynamical properties of the system. Also the model of the hydraulic subsystem shall be verified experimentally. Besides this it must be analysed whether or not the bandwidth of the controlling proportional valves are sufficiently high for using these in the control system when compensating for deflections, i.e. oscillations in the mechanical structure. Based on the above modifications to the hydraulic systems must be made if it is found necessary.4. Analysis and criterias for solving inverse kinematic configurations The crane has a given space, measured relative to its base, in which it can operate, i.e. which the tool center can reach. This is known as the workspace of the crane. Some parts of the workspace may be reached in several different ways. Therefore it is necessary to determine the optimal kinematic configuration of the crane for these areas. There may be different criterias for optimisation, here one is sued which minimises the overall load on the crane, i.e. minimizes stress at critical points. In order to do this an analysis of the stress in the structure must be made and based on this an algorithm for implementing in the control system will be developed.5. Development of load identification schemeIn order to compensate for the structural deflections in the crane, the payload carried by the crane needs to be known. Therefore an analysis of the different possibilities for online identification of the load is necessary, this includes considering which sensors are needed and how complex the load identification will be. Based on the analysis an identification scheme is to be made, which may be implemented in the final control algorithm.6. Development of control algorithmBased on the models of the mechanical and hydraulic subsystems a control law for the position trajectory control of tool center shall be developed. This control law must ensure that the system behaves as specified through control of the toll center, and that the system will be stable under all working conditions. Included in this is also the inclusion of the load identification and the kinematic optimization schemes.7. Implementation of the control systemFinally the control law developed for the system which has been tested through simulations, should be implemented in a microprocessor of DSP and verified on the physical system, i.e. the text crane. This will be done by experimentally testing it against the demands through the specified test procedure for the system. Based on these experiments it will be determined, what is attainable with the given technology for these type of systems, regarding control possibilities.Mechanization and AutomationProcesses of mechanization have been developing and becoming more complex ever since the beginning of the Industrial Revolution at the end of the 18th century . The current developments of automatic processes are , however , different from the old ones . The “automation” of the 20th century is distinct from the mechanization of the 18th and 19th centuries in as much as mechanization was applied to individual operations , whereas “automation” is concerned with the operation and control of control is go great that whereas And in many ,though not all , instances the element of control is so great that whereas mechanization displaces muscle , automation displeases brain as well .The distinction between the mechanization of the past and what is happening now is , however , not a sharp one . At one extreme we have the electronic computer with its quite remarkable capacity for discrimination and control , while at the other end of the scale are “transfer machines” , as they are now called , which may be as simple as a convey or belt to another . An automatic mechanism is one which has a capacity for self-regulate ; that is , it can regulate or control the system or process without the need for constant human attention or adjustment . Now people often talk about “feedback” as being an essential factor of the new industrial techniques , upon which is based an automatic self-regulating system and by virtue of which any deviation in the system from desired conditions can be detected, measured , reported and corrected . When “feedback” is applied to the process by which a large digital computer runs at the immense speed through a long series of sums , constantly rejecting the answers until it finds one to fit a complex set of facts that have been put to it , it is perhaps different in degree from what we have previously been accustomed to machines . But “feedback”, as such , is a familiar mechanical conception . The old-fashioned steam engine was fitted with a centrifugal governor , two balls on le
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。