已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
双曲线的几何性质 第一课时 MF1 MF2 2a 2a F1F2 F c 0 F 0 c 复习回顾 练一练 1 求下列双曲线的焦点坐标及焦距 2 x2 y2 4 变式训练 焦点在x轴的双曲线时 求焦点坐标 2 如果方程表示双曲线 求m的范围 解 m 1 2 m 2或m 1 2 对称性 一 研究双曲线的简单几何性质 1 范围 关于x轴 y轴和原点都是对称 x轴 y轴是双曲线的对称轴 原点是对称中心 又叫做双曲线的中心 x y x y x y x y 课堂新授 3 顶点 1 双曲线与对称轴的交点 叫做双曲线的顶点 M x y 4 渐近线 N x y 慢慢靠近 5 离心率 离心率 c a 0 e 1 e是表示双曲线开口大小的一个量 e越大开口越大 1 定义 2 e的范围 3 e的含义 4 等轴双曲线的离心率e 5 1 范围 4 渐近线 5 离心率 小结 或 或 关于坐标轴和原点都对称 例1 求双曲线 的实半轴长 虚半轴长 焦点坐标 离心率 渐近线方程 解 把方程化为标准方程 可得 实半轴长a 4 虚半轴长b 3 半焦距c 焦点坐标是 0 5 0 5 离心率 渐近线方程 例题讲解 例2 1 若双曲线的渐近线方程为则双曲线的离心率为 2 若双曲线的离心率为2 则两条渐近线的夹角为 课堂练习 例3 求下列双曲线的标准方程 例题讲解 巧设方程 运用待定系数法 设双曲线方程为 法二 设双曲线方程为 双曲线方程为 解之得k 4 1 共渐近线 的双曲线的应用 0表示焦点在x轴上的双曲线 0表示焦点在y轴上的双曲线 总结 双曲线的渐近线方程为 解出 椭圆与双曲线的比较 小结 关于x轴 y轴 原点对称 图形 方程 范围 对称性 顶点 离心率 A1 a 0 A2 a 0 A1 0 a A2 0 a 关于x轴 y轴 原点对称 渐近线 F2 0 c F1 0 c 2 求中心在原点 对称轴为坐标轴 经过点P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商铺拆除清运合同范本
- 商铺赠送车位合同范本
- 土地流转修房合同范本
- 围棋机构入学合同范本
- 土地合同如何补充协议
- 外贸玻璃采购合同范本
- 家政工具采购合同范本
- 培训学校转让协议合同
- 2025年健康管理系统等保测评合同协议
- 2025年健康餐品牌合作协议
- 牦牛买卖合同6篇
- 灯具安规基础知识培训课件
- 《风电场项目经济评价规范》(NB-T 31085-2016)
- 期权知识考试题库(带答案)
- GB/T 24002.1-2023环境管理体系针对环境主题领域应用GB/T 24001管理环境因素和应对环境状况的指南第1部分:通则
- 椎管内麻醉常见并发症预防与处理
- 全过程造价咨询项目服务方案
- 教学设计 心理七年级记忆1教案
- 老年人安全用药与护理PPT
- JJG 1029-2007涡街流量计
- 《食品包装学(第三版)》教学PPT课件整套电子讲义
评论
0/150
提交评论