




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级上册 1 3 2相反数和绝对值 两辆汽车从同一处O出发 分别向东 西方向行驶10km 到达A B两处 如图 它们行驶的路线相同吗 它们行驶的路程相等吗 它们行驶的路线不同 行驶的路程相等 情境导入 下面我们学习绝对值的知识 本节目标 1 掌握绝对值的概念 2 会求一个数的绝对值 3 能进行简单的绝对值的计算 4 能用绝对值比较两个负数的大小 5 能结合数轴理解绝对值的几何意义 并解决实际问题 预习反馈 1 数轴上表示数a的点与 的距离叫做数a的绝对值 记作 a 读作 2 绝对值的求法用语言叙述为 1 一个正数的绝对值是 2 一个负数的绝对值是 3 0的绝对值是 用式子表示为 1 当a 0时 a 2 当a 0时 a 3 当a 0时 a 3 用绝对值比较两个负数的大小 绝对值越大的数反而 原点 a的绝对值 它自身 它的相反数 0 a a 0 越小 预习检测 1 10 3 5 0 10 3 5 2 2与 4的绝对值分别是多少 2和 4的大小关系怎样 3 计算 5 10 2 10 0 3 5 10 解 2 2 4 4 2 4 3 5 解 原式 5 10 2 5 5 10 课堂探究 再观察图1 4数轴上的5对相反数 图1 4数轴上的5对相反数 每一对都是一个正数 另一个为负数 是不相同的两个数 在数轴上表示它们的点在原点两侧 是不同的两个点 但是这两个点到原点的距离却相等 这是互为相反数的两个数的共同特征 课堂探究 我们把数轴上表示数a的点到原点的距离叫做数a的绝对值 记作 a 例如 如图 1 5 1 所示 数轴上表示 7的点到原点的交距离是7个单位长度 所以 7的绝对值仍是 7 记作 7 7 例如 如图 1 5 2 所示 数轴上表示 5的点到原点的交距离是5个单位长度 所以 5的绝对值仍是 5 记作 5 5 特殊地 我们规定 0的绝对值仍是0 记作 0 0 课堂探究 1 怎样求25 0 16 0 16545 0 0001的绝对值 2 我们怎样用语言来叙述一个有理数的绝对值的法则 由于有理数分为正数 负数和零三类 所以可以分三类不同的情况来叙述这个法则 有理数绝对值的求法 正数的绝对值是它自身 负数的绝对值是它的相反数 0的绝对值仍是0 用式子表示为 1 当a是正数时 a a 2 当a是负数时 a a 3 当a是0时 a 0 典例精析 例 5的绝对值是 A 5B 5C D A 跟踪训练 一个数的绝对值等于3 这个数是 A 3B 3C 3D C 课堂探究 学习了有理数的绝对值以后 我们可以说 绝对值相同 但符号相反的两个数互为相反数 在实际生活中 是否存在只需考虑数的绝对值而暂时不考虑它的符号的例子 如果有 请举出怎样的例子 例如 在 1层的停车场乘坐电梯去15层的办公室 一共经过多少层 典例精析 例1 计算 典例精析 例2 求出绝对值分别是12 0的有理数 解 因为 12 12 12 所以绝对值是12的有理数是 12或 12 因为 所以绝对值是的有理数是 因为只有0的绝对值是0 所以绝对值是0的有理数只有0 跟踪训练 1 计算 2 求出绝对值分别是10 0的有理数 解 因为 10 10 10 所以绝对值是10的有理数是 10或 10 因为 所以绝对值是的有理数是 因为只有0的绝对值是0 所以绝对值是0的有理数只有0 课堂探究 1 一个数的绝对值越小 数轴上表示它的点离原点越近 这个说法正确吗 为什么 2 是否能根据比较两个有理数的绝对值的大小 来比较两个负数的大小 根据 一个负数的绝对值越小 数轴上表示它的点离原点越近 和 数轴上表示两个负数的点 右边的点表示的数总比左边的点表示的数大 可以推想出 两个负数中 绝对值较大的数反而小 所以可以通过比较它们的绝对值的大小来比较这两个负数的大小 典例精析 跟踪训练 1 数a在数轴上的对应点在原点左边 且 a 4 则a的值为 A 4或 4B 4C 4D 以上都不对2 下列说法错误的是 A 一个正数的绝对值一定是正数B 任何数的绝对值都是正数C 一个负数的绝对值是正数D 任何数的绝对值都不是负数 C B 随堂检测 3 如果一个数的绝对值等于3 25 则这个数是 4 如果a的相反数是 0 74 那么 a 5 如果 x 1 2 则x 6 已知 x 2 y 3 0 则x y 3 25或 3 25 0 74 3或 1 2 3 随堂检测 7 已知 a 1 与 b 4 互为相反数 且c为绝对值最小的有理数 d为有理数中最大的负整数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省【中职专业高考】2025年中职高考对口升学(理论考试)真题卷【土木建筑大类】模拟练习
- 2025年春季黑龙江大庆油田有限责任公司高校毕业生招聘50人考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025湖南泸溪县汇金产业投资集团有限公司招聘工作人员拟聘用人员考前自测高频考点模拟试题及答案详解(考点梳理)
- IG8-生命科学试剂-MCE
- 2025年河北唐山市直属公立医院第一次公开选聘工作人员18名模拟试卷带答案详解
- 2025广东广州市中山大学孙逸仙纪念医院耳鼻喉科医技岗位招聘1人考前自测高频考点模拟试题及完整答案详解
- 安全培训效果测验课件
- 2025湖南开放大学高层次人才公开招聘25人模拟试卷及答案详解(全优)
- 2025福建福州罗源县卫健系统事业单位招聘控制数12人模拟试卷(含答案详解)
- 行政事务处理流程模板与指南
- 跨学科实践活动07 垃圾的分类与回收利用(活动设计)-2024-2025学年九年级化学跨学科实践活动教学说课稿+设计(人教版2024)
- 2025年职业培训学校建设项目可行性分析与初步设计方案报告
- 2025年亚马逊AWS云服务合同范本参考
- 班干部聘任仪式
- 2025年老年病学住院医师规培出科考试理论笔试答案及解析
- 激光武器物理课件
- 气瓶泄漏应急演练范文大全
- 2025年REACH 250项高度关注物质SVHC清单第34批
- 2025年软件架构师专业技术考核试题及答案解析
- 八上语文第9课《天上有颗南仁东星》课件
- 2025-2026学年苏教版(2024)小学科学三年级上册(全册)课时练习及答案(附目录P102)
评论
0/150
提交评论