黄冈高考物理总复习决战资料(绝密)专题1-5参考答案.doc_第1页
黄冈高考物理总复习决战资料(绝密)专题1-5参考答案.doc_第2页
黄冈高考物理总复习决战资料(绝密)专题1-5参考答案.doc_第3页
黄冈高考物理总复习决战资料(绝密)专题1-5参考答案.doc_第4页
黄冈高考物理总复习决战资料(绝密)专题1-5参考答案.doc_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黄冈高考物理总复习决战资料(绝密)黄冈中学:郑帆专题一 运动和力【知识结构】平抛运动特例匀变速曲线运动恒力与初速度不在一条直线上天体的运动带电粒子在磁场中的运动合力提供向心力匀速圆周运动此类问题往往应用能量守恒定律和牛顿第二定律求解合力的大小和方向均在变化轨迹不是圆周的曲线轨迹是圆周合力与位移正比方向力的方向作周期性变化力的方向总与速度垂直力的大小不变而方向变化图像法解答直观简捷作周期性加速、减速运动此类问题往往应用动能定理或守恒律求解简谐运动振动在媒质中的传播机械波振动的周期性导致波的周期性振动的多解性与波的多解性是一致的多力平衡用正方分解法对多体问题,整体分析与隔离分析交替使用三力平衡用矢量三角形方法静止或匀速直线运动状态合力为零匀变速直线运动的规律已知运动求力解决两类问题已知力求运动力和运动状态变化F=ma匀变速直线运动恒力与初速度在一条直线上匀变速运动恒力物体受力情况专题一 运动和力参考答案典型例题fNF(Mm)g图12例1 解析:对系统进行整体分析,受力分析如图12:由平衡条件有:由此解得 例2 解析: (1)设t1、t2为声源S发出两个信号的时刻,为观察者接收到两个信号的时刻则第一个信号经过时间被观察者A接收到,第二个信号经过()时刻被观察者A接收到,且t1vASAt1ALt2vSt1vAt1AASL设声源发出第一个信号时,S、A两点间的距离为L,两个声信号从声源传播到观察者的过程中,它们的运动的距离关系如图所示,可得由以上各式解得(2)设声源发出声波的振动周期为T,这样,由以上结论,观察者接收到的声波振动的周期T,由此可得,观察者接收到的声波频率与声源发出声波频率间的关系为例3 解答:根据题意作图14对这两个天体而言,它们的运动方程分别为 r2r1m1m2O图14以及 由以上三式解得将r1和r2的表达式分别代和式,可得例4 解答:(1)A、B两球以相同的初速度v0,从同一点水平抛出,可以肯定它们沿同一轨道运动作细线刚被拉直时刻A、B球位置示意图15根据题意可知:xy图15设A球运动时间为t,则B球运动时间为t0.8,由于A、B球在竖直方向上均作自由落体运动,所以有由此解得t =1s(2)细线刚被拉直时,A、B球的水平位移分别为例5 解答:(1)A球通过最低点时,作用于环形圆管的压力竖直向下,根据牛顿第三定律,A球受到竖直向上的支持力N1,由牛顿第二定律,有: 由题意知,A球通过最低点时,B球恰好通过最高点,而且该时刻A、B两球作用于圆管的合力为零;可见B球作用于圆管的压力肯定竖直向上,根据牛顿第三定律,圆管对B球的反作用力N2竖直向下;假设B球通过最高点时的速度为v,则B球在该时刻的运动方程为 由题意N1=N2 对B球运用机械能守恒定律 解得 式代入式可得:例6 解答:火箭上升到最高点的运动分为两个阶段:匀加速上升阶段和竖直上抛阶段地面上的摆钟对两个阶段的计时为即总的读数(计时)为t =t1t2=360(s)放在火箭中的摆钟也分两个阶段计时第一阶段匀加速上升,a=8g,钟摆周期其钟面指示时间第二阶段竖直上抛,为匀减速直线运动,加速度竖直向下,a=g,完全失重,摆钟不“走”,计时可见放在火箭中的摆钟总计时为综上所述,火箭中的摆钟比地面上的摆钟读数少了例7 解答:在情形(1)中,滑块相对于桌面以速度v0=0.1m/s向右做匀速运动,放手后,木板由静止开始向右做匀加速运动经时间t,木板的速度增大到v0=0.1m/s,在5s内滑块相对于桌面向右的位移大小为S1=v0t=0.5m而木板向右相对于桌面的位移为可见,滑块在木板上向右只滑行了S1S2=0.25m,即达到相对静止状态,随后,它们一起以共同速度v0向右做匀速直线运动只要线足够长,桌上的柱子不阻挡它们运动,滑块就到不了木板的右端在情形(2)中,滑块与木板组成一个系统,放手后滑块相树于木板的速度仍为v0,滑块到达木板右端历时例8 解答:以m表示球的质量,F表示两球相互作用的恒定斥力,l表示两球间的原始距离A球作初速度为v0的匀减速运动,B球作初速度为零的匀加速运动在两球间距由l先减小,到又恢复到l的过程中,A球的运动路程为l1,B球运动路程为l2,间距恢复到l时,A球速度为v1,B球速度为v2由动量守恒,有由功能关系:A球 B球:根据题意可知l1=l2,由上三式可得得v2=v0、v1=0 即两球交换速度当两球速度相同时,两球间距最小,设两球速度相等时的速度为v,则B球的速度由增加到v0花时间t0,即得解二:用牛顿第二定律和运动学公式(略)跟踪练习1C 提示:利用平衡条件2(1)重物先向下做加速运动,后做减速运动,当重物速度为零时,下降的距离最大,设下降的最大距离为h,由机械能守恒定律得 解得(2)系统处于平衡状态时,两小环的可能位置为TNm1mmgTa两小环同时位于大圆环的底端b两小环同时位于大圆环的顶端c两小环一个位于大圆环的顶端,另一个位于大圆环的底端d除上述三种情况外,根据对称性可知,系统如能平衡,则小圆环的位置一定关于大圆环竖直对称轴对称设平衡时,两小圆环在大圆环竖直对称轴两侧角的位置上(如图)对于重物m,受绳的拉力T与重力mg作用,有T=mg对于小圆环,受到三个力的作用,水平绳的拉力T,竖直绳的拉力T,大圆环的支持力N两绳的拉力沿大圆环切向的分力大小相等,方向相反得3设测速仪扫描速度为v,因P1、P2在标尺上对应间隔为30小格,所以格/s测速仪发出超声波信号P1到接收P1的反射信号n1从图B上可以看出,测速仪扫描12小格,所以测速仪从发出信号P1到接收其反射信号n1所经历时间汽车接收到P1信号时与测速仪相距同理,测速仪从发出信号P2到接收到其反射信号n2,测速仪扫描9小格,故所经历时间汽车在接收到P2信号时与测速仪相距所以,汽车在接收到P1、P2两个信号的时间内前进的距离S=S1S2=17m从图B可以看出,n1与P2之间有18小格,所以,测速仪从接收反射信号n1到超声信号P2的时间间隔所以汽车接收P1、P2两个信号之间的时间间隔为汽车速度m/s4从B发出第一个超声波开始计时,经被C车接收故C车第一次接收超声波时与B距离第二个超声波从发出至接收,经TT时间,C车第二车接收超声波时距B为,C车从接收第一个超声波到接收第二个超声波内前进S2S1,接收第一个超声波时刻,接收第二个超声波时刻为所以接收第一和第二个超声波的时间间距为故车速车向右运动5ACD6(1)根据动能定理,可求出卫星由近地点到远地点运动过程中,地球引力对卫星的功为(2)由牛顿第二定律知 ygOx7(1)建立如图所示坐标系,将v0与g进行正交分解在x方向,小球以为初速度作匀加速运动在y方向,小球以为初速度,作类竖直上抛运动当y方向的速度为零时,小球离斜面最远,由运动学公式小球经时间t上升到最大高度,由得(2)8(1)设滑雪者质量为m,斜面与水平面夹角为,滑雪者滑行过程中克服摩擦力做功 由动能定理 离开B点时的速度 (2)设滑雪者离开B点后落在台阶上可解得 此时必须满足 当时,滑雪者直接落到地面上,可解得9AC10摆球先后以正方形的顶点为圆心,半径分别为R1=4a,R2=3a,R3=2a,R4=a为半径各作四分之一圆周的圆运动当摆球从P点开始,沿半径R1=4a运动到最低点时的速度v1,根据动量定理 当摆球开始以v1绕B点以半径R2=3a作圆周运动时,摆线拉力最大,为Tmax=7mg,这时摆球的运动方程为 由此求得v0的最大许可值为当摆球绕C点以半径R3=2a运动到最高点时,为确保沿圆周运动,到达最高点时的速度(重力作向心力)由动能定理11B12由题意知,周期为波速P、Q两点距离相差次全振动所需时间即13ABC 开始时小车上的物体受弹簧水平向右的拉力为6N,水平向左的静摩擦力也为6N,合力为零沿水平向右方向对小车施加以作用力,小车向右做加速运动时,车上的物体沿水平向右方向上的合力(F=ma)逐渐增大到8N后恒定在此过程中向左的静摩擦力先减小,改变方向后逐渐增大到(向右的)2N而保持恒定;弹簧的拉力(大小、方向)始终没有变,物体与小车保持相对静止,小车上的物体不受摩擦力作用时,向右的加速度由弹簧的拉力提供:14(1)设物体与板的位移分别为S物、S板,则由题意有 解得:(2)由得,故板与桌面之间的动摩擦因数15在010s内,物体的加速度(正向)在1014s内,物体的加速度 (反向)由牛顿第二定律 由此解得F=8.4N =0.3416(1)依题意得=0,设小滑块在水平面上运动的加速度大小为a,由牛顿第二定律,由运动学公式,解得(2)滑块在水平面上运动时间为t1,由在斜面上运动的时间(3)若滑块在A点速度为v1=5m/s,则运动到B点的速度即运动到B点后,小滑块将做平抛运动假设小滑块不会落到斜面上,则经过落到水平面上,则水平位移所以假设正确,即小滑块从A点运动到地面所需时间为专题二 动量与机械能典型例题例1 D解析:本题辨析一对平衡力和一对作用力和反作用力的功、冲量因为,一对平衡力大小相等、方向相反,作用在同一物体上,所以,同一段时间内,它们的冲量大小相等、方向相反,故不是相同的冲量,则错误如果在同一段时间内,一对平衡力做功,要么均为零(静止),要么大小相等符号相反(正功与负功),故正确至于一对作用力与反作用力,虽然两者大小相等,方向相反,但分别作用在两个不同物体上(对方物体),所以,即使在同样时间内,力的作用点的位移不是一定相等的(子弹穿木块中的一对摩擦力),则做功大小不一定相等而且作功的正负号也不一定相反(点电荷间相互作用力、磁体间相互作用力的做功,都是同时做正功,或同时做负功)因此错误,正确综上所述,选项D正确【例2】 解析:(1)飞机达到最大速度时牵引力F与其所受阻力f 大小相等,由P=Fv得(2)航空母舰上飞机跑道的最小长度为s,由动能定理得 将代入上式得或【例3】 解析:解法1(程序法):选物体为研究对象,在t1时间内其受力情况如图所示,选F的方向为正方向,根据牛顿第二定律,物体运动的加速度为mgFmg撤去F时物体的速度为v1=a1t1=26m/s=12m/s撤去F后,物体做匀减速运动,其受力情况如图所示,根据牛顿第二定律,其运动的加速度为物体开始碰撞时的速度为v2=v1a2t2=12(2)2m/s=8m/s再研究物体碰撞的过程,设竖直墙对物体的平均作用力为,其方向水平向左若选水平向左为正方向,根据动量定理有解得解法2(全程考虑):取从物体开始运动到碰撞后反向弹回的全过程应用动量定理,并取F的方向为正方向,则所以点评:比较上述两种方法看出,当物体所受各力的作用时间不相同且间断作用时,应用动量定理解题对全程列式较简单,这时定理中的合外力的冲量可理解为整个运动过程中各力冲量的矢量和此题应用牛顿第二定律和运动学公式较繁琐另外有些变力作用或曲线运动的题目用牛顿定律难以解决,应用动量定理解决可化难为易【例4】 解析:该题用守恒观点和转化观点分别解答如下:解法一:(守恒观点)选小球为研究对象,设小球沿半径为R的轨道做匀速圆周运动的线速度为v0,根据牛顿第二定律有 当剪断两物体之间的轻线后,轻线对小球的拉力减小,不足以维持小球在半径为R的轨道上继续做匀速圆周运动,于是小球沿切线方向逐渐偏离原来的轨道,同时轻线下端的物体m1逐渐上升,且小球的线速度逐渐减小假设物体m1上升高度为h,小球的线速度减为v时,小球在半径为(Rh)的轨道上再次做匀速圆周运动,根据牛顿第二定律有 再选小球M、物体m1与地球组所的系统为研究对象,研究两物体间的轻线剪断后物体m1上升的过程,由于只有重力做功,所以系统的机械能守恒选小球做匀速圆周运动的水平面为零势面,设小球沿半径为R的轨道做匀速圆周运动时m1到水平板的距离为H,根据机械能守恒定律有 以上三式联立解得 解法二:(转化观点)与解法一相同,首先列出两式,然后再选小球、物体m1与地球组成的系统为研究对象,研究两物体间的轻线剪断后物体m1上升的过程,由于系统的机械能守恒,所以小球动能的减少量等于物体m1重力势能的增加量即 、式联立解得 点评:比较上述两种解法可以看出,根据机械能守恒定律应用守恒观点列方程时,需要选零势面和找出物体与零势面的高度差,比较麻烦;如果应用转化观点列方程,则无需选零势面,往往显得简捷【例5】 解析:(1)第一颗子弹射入木块过程中动量守恒 解得:=3m/s 木块向右作减速运动加速度m/s2 木块速度减小为零所用时间 解得t1 =0.6s8.3m木块将从B端落下所以木块在传送带上最多能被16颗子弹击中(3)第一颗子弹击穿木块过程中产生的热量为 木块向右减速运动过程中板对传送带的位移为 产生的热量为Q2= 木块向左加速运动过程中相对传送带的位移为 产生的热量为 第16颗子弹射入后木块滑行时间为t3有 解得t3=0.4s 木块与传送带的相对位移为S=v1t30.8 产生的热量为Q4= 全过程中产生的热量为Q=15(Q1Q2Q3)Q1Q4解得Q=14155.5J 【例6】 解析:运动分析:当小车被挡住时,物体落在小车上沿曲面向下滑动,对小车有斜向下方的压力,由于P的作用小车处于静止状态,物体离开小车时速度为v1,最终平抛落地,当去掉挡板,由于物对车的作用,小车将向左加速运动,动能增大,物体相对车滑动的同时,随车一起向左移动,整个过程机械能守恒,物体滑离小车时的动能将比在前一种情况下小,最终平抛落地,小车同时向前运动,所求距离是物体平抛过程中的水平位移与小车位移的和求出此种情况下,物体离开车时的速度v2,及此时车的速度以及相应运动的时间是关键,由于在物体与小车相互作用过程中水平方向动量守恒这是解决v2、间关系的具体方法(1)挡住小车时,求物体滑落时的速度v1,物体从最高点下落至滑离小车时机械能守恒,设车尾部(右端)离地面高为h,则有, 由平抛运动的规律s0=v1t (2)设去掉挡板时物体离开小车时速度为v2,小车速度为,物体从最高点至离开小车之时系统机械能守恒 物体与小车相互作用过程中水平方向动量守恒 此式不仅给出了v2与大小的关系,同时也说明了v2是向右的物体离开车后对地平抛 车在时间内向前的位移 比较式、,得解式、,得此种情况下落地点距车右端的距离点评:此题解题过程运用了机械能守恒、动量守恒及平抛运动的知识,另外根据动量守恒判断m离车时速度的方向及速度间的关系也是特别重要的【例7】 解析:(1)设第一次碰墙壁后,平板车向左移动s,速度为0由于体系总动量向右,平板车速度为零时,滑块还在向右滑行由动能定理 代入数据得 (3)假如平板车在第二次碰撞前还未和滑块相对静止,那么其速度的大小肯定还是2m/s,滑块的速度则大于2m/s,方向均向右这样就违反动量守恒所以平板车在第二次碰撞前肯定已和滑块具有共同速度v此即平板车碰墙前瞬间的速度 代入数据得 A B C D(a)(b)(c)(3)平板车与墙壁第一次碰撞后到滑块与平板又达到共同速度v前的过程,可用图(a)(b)(c)表示(a)为平板车与墙壁撞后瞬间滑块与平板车的位置,图(b)为平板车到达最左端时两者的位置,图(c)为平板车与滑块再次达到共同速度为两者的位置在此过程中滑块动能减少等于摩擦力对滑块所做功,平板车动能减少等于摩擦力对平板车所做功(平板车从B到A再回到B的过程中摩擦力做功为零),其中、分别为滑块和平板车的位移滑块和平板车动能总减少为其中为滑块相对平板车的位移此后,平板车与墙壁发生多次碰撞,每次情况与此类似,最后停在墙边设滑块相对平板车总位移为l,则有 代入数据得 l即为平板车的最短长度【例8】 解析:本题应用动量守恒,机械能守恒及能量守恒定律联合求解。在m下落在砂箱砂里的过程中,由于车与小泥球m在水平方向不受任何外力作用,故车及砂、泥球整个系统的水平方向动量守恒,则有: 此时物块A由于不受外力作用,继续向右做匀速直线运动再与轻弹簧相碰,以物块A、弹簧、车系统为研究对象,水平方向仍未受任何外力作用,系统动量守恒,当弹簧被压缩到最短,达最大弹性势能Ep时,整个系统的速度为v2,则由动量守恒和机械能守恒有: 由式联立解得: 之后物块A相对地面仍向右做变减速运动,而相对车则向车的左面运动,直到脱离弹簧,获得对车向左的动能,设刚滑至车尾,则相对车静止,由能量守恒,弹性势能转化为系统克服摩擦力做功转化的内能有: 由两式得: 跟踪练习1【答案】 D【解析】 在t1时间内,I1=Ft1=mv=p1,在t2时间内I2=Ft2=2mvmv=mv=p2 I1=I2又W1W2,D选项正确【说明】 物体在恒定的合外力F作用下做直线运动,由牛顿第二定律可知物体做匀加速直线运动,速度由零增大到v的时间t2和由v增大到2v的时间t2是相等的,所以在t1和t2的两段时间内合外力的冲量是相等的在t1的平均速度小于t2时间内的平均速度,从而得出在t1内的位移小于在t2时间的位移,恒力F所做的功W1vB,弹簧还将继续缩短,所以这种状态是能够出现的若则表示B球与板碰撞后A、B向左运动B球与板碰撞后B和A动量守恒 由可得 此时A、B球的总动能 大于A球最初的动能,因此这种状态是不可能出现的因此,必须使B球在速度为时与挡板发生碰撞12【解析】 (1)设C球与B球粘结成D时,D的速度为v1,由动量守恒,有 当弹簧压至最每短时,D与A的速度相等,设此速度为v2,由动量守恒,有 由两式得A的速度(2)设弹簧长度被锁定后,贮存在弹簧中的势能为Ep,由能量守恒,有撞击P后,A与D的动能都为零解除锁定后,当弹簧刚恢复到自然长度时,势能全部转变成D的动能,设D的速度为v3,则有以后弹簧伸长,A球离开挡板P,并获得速度当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动时守恒,有当弹簧伸到最长时,其势能最大,设此势能为,由能量守恒,有解以上各式得说明:该题以“双电荷交换反应”为背景,考查的是动量守恒和机械能守恒定律的知识,又考查了理解能力,推理能力,分析综合能力,突出了对物理过程的考查考生必须首先弄清整个物理因素,针对不同的物体在各个阶段的受力情况,再确定其运动所遵循的规律分析物理过程是解决这个问题的关键,现具体过程分析如下:C以v0与B发生完全非弹性碰撞,弹簧长度不能突变,A可看成静止BC形成一体D向左压缩弹簧,A的速度增大,D的速度减小,两者共速,弹簧压缩最短弹簧锁定后与挡板相碰而静止解除锁定,D向右加速,墙对A的作用力不断减小,达到原长时作用力为零弹簧达到自然长度后,D继续向右运动逐渐减速,而A开始向右加速,弹簧伸长到最长时,两物体的速度相等,这时弹簧的弹性势能最大根据上面的分析,把复杂的物理过程分解为几个简单的过程,同时发掘出弹簧压缩最短和伸长最长的隐含条件,运用物理规律列方程,就可达到准确解题的目的13【解析】 (1)当A、B、C三者的速度相等时弹簧的弹性势能最大由于A、B、C三者组成的系统动量守恒,解得(2)B、C碰撞时B、C组成的系统动量守恒,设碰后瞬间B、C两者速度为v,则 设物A速度为时弹簧的弹性势能最大为,根据能量守恒(3)A不可能向左运动 系统动量守恒,设A向左,vA4m/s则作用后A、B、C动能之和 实际上系统的机械能根据能量守恒定律,EE是不可能的14【解析】令A、B质量均为m,A刚接触B时的速度为v1(碰前)A克服阻力做功: A、B碰撞过程中动量守恒,令碰后A、B的共同速度为v2,有mv1=2mv2 碰后A、B先一起向左运动,接着A、B一起被弹回,在弹簧恢复到原长时,设A、B的共同速度为v3,在这一过程中,弹簧的弹性势能始末状态都是零,只有克服摩擦力做功 此后A、B开始分离,A单独向右滑动到P点停下,克服阻力做功 由以上各式得 15【解析】 C有可能停在B上,也有可能停在A上,还有可能滑离A,先假设停在B上,由动量守恒定律得:设C在B上滑动距离为x,木板B的位移为s,则C对地的位移为sx,由功能关系得:对木板:对C:所以得:从而解得,大于板长,C将滑离B板设C刚滑到A板上速度为,此时AB两板的速度为vB,由动量守恒得由功能关系得:合理的解是: 当C滑到A上,B以0.155m/s的速度匀速运动了,设C停在A上,速度vA,相对A滑行距离为y,由动量守恒得:解得:0.563m/s,由动能关系得:代入数据得y=0.50m,小于A板长度,C不能滑离A板,最后A、B、C的速度分别为vA=0.563m/s vB=0.155m/s,m/s16【解析】 对物体,滑动摩擦力f 做负功,由动能定理得即f 对物体做负功,使物块动能减少对木块,滑动摩擦力f 对木块做正功,由动能定理得,即f 对木块做正功,使木块动能增加,系统减少的机械能为 本题中,物块与木块相对静止时,则上式可简化为 又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则 联立、式得故系统机械能转化成内能的量为评析:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即系统机械能转化为系统的内能,记为上述情况和同样符合该规律,掌握了它可使许多计算简化专题三 电场和磁场典型例题例1 解析:A点拨:电场线从+Q发出,到接地的很大的薄金属板,并与金属板垂直。根据电场线可判断正确,M点的电场是+Q的电场与金属板的感应电荷的电场的叠加,故错误;N点与金属板接地,所以电势为零,但电场强度不为零,故正确,错误。【例2】 解析:对A进行受力分析,设悬线的拉力为T,水平线的拉力为,在竖直方向上受重力和悬线的拉力而平衡: 在水平方向上,小球受电场力、电荷间的为库仑力、悬线的水平拉力和水平线的拉力而平衡: 要两球处于题设条件的平衡状态,则对水平线的受力要求为: 联解得到: 【例3】解析:电子经U1加速后,设以的速度垂直进入偏转电场,由动能定理得: 电子在偏转电场中运动的时间为: 电子在偏转电场中的加速度为: 电子在偏转电场中的偏转量为: 由以上四式联解得到示波管的灵敏度为:可见增大、减小U1或d均可提高示波管的灵敏度。【例4】解析:由于电容器与电源相连,则电容器两极板的电压不变,根据平行板电容器电容可知,当增大S不变时,电容C减小;又因可得,电荷量减小;又由可知,场强E减小,故A选项正确;当S增大,不变时,C增大,Q增大,E不变,所以B选项错误;当减小,S增大时,C增大,Q增大,E增大,所以C选项正确;当S减小,减小时,电容C不一定增大,Q也不一定增大,但E一定增大,所以D选项错误。可见本题AC选项正确。【例5】解析:如图所示,电场对粒子加速,由动能定理得:OLLUSdUBDR 由于粒子在电场加速过程中做匀加速直线运动,则加速的时间为: 粒子在偏转电场中做类似平抛运动,其加速度为: 粒子通过偏转电场的时间为: 粒子在偏转电场中的侧移距离为: 侧向速度为: 则粒子射出偏转电场时的速度为: 以速度进入磁场做匀速度圆周运动的洛仑兹力为向心力,设运动半径为R: 则磁场宽度为: 粒子在磁场中做匀速圆周运动的周期为: 所以所以粒子在磁场中运动的时间为: 粒子从S出发到回到S的周期T为: 偏转电压正负极换向时间为: 【例6】 解析:正离子每次经过缝隙时都能得到加速必须满足在筒中飞行时间 所以第一个筒长度 进入第二个筒时速度为v2,则 第二个筒长进入第三个筒的速度为v3,则 第三个筒长进入第n个筒的速度vn满足 第n个筒的长度为, 解以上各式得: 由动能定理得: 【例7】解析:设带电粒子带电为,根据题目条件可知,要使粒子平衡,则下极板带正电,上极板带负电,且有: 当电场由E1变到E2,但方向不变,时,有,粒子在E2的方向上做匀加速度直线运动,粒子从A运动到B,设加速所用时间为,此时E2反向,设粒子的速度为,此后粒子向上做加速度为减速度运动,直到速度为零,到达B点;此后粒子在电场力和重力作用下向下做初速度为零的匀加速直线运动,加速度大小为,回到出发点A。设粒子从B到A的时间为。 粒子从B点经C点回到A点,有: 由于 所以有: 由题意可知: 联解得:即: 得到:【例8】分析:(1)微粒运动到O点之前要受到重力、电场力和洛仑兹力作用,如图所示在这段时间内微粒做匀速直线运动,说明三力合力为零由此可得出微粒运动到O点时速度的大小和方向(2)微粒运动到O点之后,撤去磁场,微粒只受到重力、电场力作用,其合力为一恒力,与初速度有一夹角,因此微粒将做匀变速曲线运动,如图所示可利用运动合成和分解的方法去求解解析:因为xyBEPOfEqvS2GS1 电场力为:则有:所以得到: v=10m/s所以=37因为重力和电场力的合力是恒力,且方向与微粒在O点的速度方向垂直,所以微粒在后一段时间内的运动为类平抛运动可沿初速度方向和合力方向进行分解。设沿初速度方向的位移为,沿合力方向的位移为,则因为 所以 P点到原点O的距离为15m; O点到P点运动时间为1. 2s跟踪练习1.解析:P、Q在O点的合场强为零,沿着Oab线到无穷远处,P、Q的合场强也为零,可见沿Oab线远离O点时,合场强是先增大后减小,故不一定大于,而电势离电荷越远越低,必有大于,所以B选项正确。2.解析:由于电荷两次都是从电场外移入电场的,故选电场外电势为零解题方便。由 可得 A、 B两点间电势差:UAB=UAUB=6102(2103)=2.6103V当电荷由A移到B时电场力做功:3.解析:用相似三角形法,得到,故得到与偏角无关。所以C、D选项正确。ABOABEqT1T2mgAmgT2EqB (1) (2) (3) (4)图134答4.解析:.图134答(1)中虚线表示A、B球原来的平衡位 置,实线表示烧断后重新达到平衡的位置,其中、分别表示细线OA、AB与竖直方向的夹角。A球受力如图134答(2)所示:重力mg,竖直向下;电场力qE,水平向左;细线OA对A的拉力T1,方向如图;细线AB对A的拉力T2,方向如图。由平衡条件:,B球受力如图134答(3)所示:重力mg,竖直向下;电场力qE,水平向右;细线AB对B的拉力T2,方向如图。由平衡条件:, ,联立以上各式并代入数据得,由此可知,A、B球重新达到平衡的位置如图134答(4)所示。与原来位置相比,A球的重力势能减少了,EA=mgl(1sin60),B球的重力势能减少了,A球的电势能增加了,B球的电势能减少了,两种势能总和减少了,代入数据解得: W=6.8102J5.解析:设电子经电场加速后的速度为 得到: 设电子射出平行板的偏角为,两极板间的距离为,电子的加速度为 而电子在平行板中运动的时间为: 电子的偏转角为: 由联解得: 所以C选项正确。6. 解析:(1)计算电子打到记录纸上的最高点的坐标,设v0为电子A、B板的中心线射入电场时的初速度,则,电子在中心线方向的运动为匀速运动,设电子穿过A、B板的时间为t0,则,电子在垂直A、B板方向的运动为匀加速直线运动,对于恰能穿过A、B板的电子,在它通过时加在两板间的电压UC应满足,联立上面三式得,此电子从A、B板射出时沿y方向的分速度为,以后,此电子做匀速直线运动,它打在记录纸上的点最高。设纵坐标为y。由答图可得,7. 解析:静电计是用来测量带电体和大地间的电势差的,平行板电容器与电源断开,则电容器所带的电量几乎不变,将B板向上移动时,两极板间的正对面积减小,电容减小,由可知,U增大,所以选项D正确。8.解析:由于平行板电容器已充电,所以电量不变,当上极板下移后,极间距离变小,根据可知,电容C增大,根据可知,极板间电压变小;由电场强度和可知,与极间距离无关,所以电场强度E不变;由可知,由于P点到接地板间的距离不变,所以P点的电势不变。由电势能与电势电量的关系OCPv0POC(甲) (乙)可知,不变。所以选项BD正确.9.解析:粒子进入磁场做圆周运动,由于不知道粒子的带电性质和磁场的方向,因此其轨迹并不确定,但只有两种情形,要么如图(甲)所示,要么如图(乙)所示,首先分析图甲:作v0的垂直线段,切取OC0,C即为圆面积心,画出其轨迹如图,。由几何关系可得,所以粒子在磁场中飞行的时间为 P点的坐标为yxM、N、0,-bL,0O再看图乙:由几何关系得,粒子在磁场中飞行的时间为,P点的坐标为。10. 解析(1)粒子带正电;(2)粒子由N至O在电场力作用下作初速为零的匀加速直线运动,到O后进入磁场后做匀速圆周运动,作半圆运动后,回到x轴进入电场,在电场力作用下先做匀减速直线运动直至速度为零再向上作初速为零的匀加速直线运动重复进行,如图所示轨迹,最后到达M点,粒子在电场中,运动距离b到达磁场区域,电场力做正功,据动能定理有:。从磁场再次进入电场,设运动的路程为S,粒子则克服电场力做功。据动能定理有:,上两式知,粒子在磁场中偏转后刚好过M点的条件是L应为圆轨道半径R的2N倍(其中N1、2、3),而,满足条件的N至O距离(其中N1、2、3)(3)要使粒子从N到M的时间最短则应N1。即粒子从N到O,再由做一个半圆运动恰好要到M点,而N1,由动量定理:,而,所以NOM最短费时11.AB,点拨:画出B极板的电势变化的图线,分析电子的运动状态,可结合速度图线进行分析。 12.解析:设碳离子到达b处时的速度为v1,从c端射出时的速度为v2,由能量关系得: 进入磁场后,碳离子做圆周运动,可得: 由以上三式可得: 由及题给数值可解得:13. 解析: (1)粒子每经狭缝AB一次,加速一次,增加动能qU,故绕行n圈(经n次加速)回到A板时获得的总动能为(2)由和得粒子绕行n圈时,磁场的磁感应强度递增到u U 0 t1 t2 t3 t 图155答3(3)A、B间距离远小于半径R,粒子穿过其间所花时间忽略不计,故粒子绕行n圈所用时间 粒子绕n圈所需要的时间 (4)按题意要求画出ut的函数图象如图155答3所示(是时间间隔越来越小,加速时间越来越短的等幅脉冲电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论