附加题-排列组合、概率统计(2).doc_第1页
附加题-排列组合、概率统计(2).doc_第2页
附加题-排列组合、概率统计(2).doc_第3页
附加题-排列组合、概率统计(2).doc_第4页
附加题-排列组合、概率统计(2).doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黄天浩教案 让学习成为一种习惯!教学目标:掌握概率统计问题的算法。教学重点:离散型随机变量的分布列,准确运用期望和方差公式,条件概率及相对独立事件、理解n次独立重复实验的模型。教学难点:条件概率及相对独立事件的概率求法,期望与方差公式运用。教学过程:一、排列、组合、二项式定理1、排列数公式:Anm=n(n-1)(n-2)(n-m+1)=,.组合数公式:Cnm=,.组合数性质:;2、二项式定理:掌握二项展开式的通项:;例1已知,当时,求证:;(1)因为,所以当时,= . 所以 (2)由(1)得,即,所以 另法:可用数学归纳法来证明二、概率分布1、离散性随机变量的分布列一般地,设离散型随机变量可能取得值为: X1,X2,X3,取每一个值Xi(I=1,2,)的概率为P(,则称表X1X2xiPP1P2Pi为随机变量的概率分布,简称的分布列。两条基本性质:);P1+P2+=1。2、独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。(1)两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(AB)=P(A)P(B); (2)如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k次的概率:Pn(k)=CPk(1P)n-k。3、随机变量的期望和方差(1)随机变量的期望;反映随机变量取值的平均水平。(2)离散型随机变量的方差:;反映随机变量取值的稳定与波动,集中与离散的程度。基本性质:;。4、几种特殊的分布列(1)两点分布:对于一个随机试验,如果它的结果只有两种情况,则我们可用随机变量,来描述这个随机试验的结果。如果甲结果发生的概率为P,则乙结果发生的概率必定为1P,均值为E=p,方差为D=p(1p)。(2)二项分布:如果我们设在每次试验中成功的概率都为P,则在n次重复试验中,试验成功的次数是一个随机变量,用来表示,则服从二项分布则在n次试验中恰好成功k次的概率为:记是n次独立重复试验某事件发生的次数,则B(n,p);其概率。期望E=np,方差D=npq。例2假定某射手每次射击命中的概率为,且只有发子弹该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完设耗用子弹数为,求:标被击中的概率; 的概率分布; 均值例3、学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人设为选出的人中既会唱歌又会跳舞的人数,且(I) 求文娱队的人数;(II) 写出的概率分布列并计算例4、盒中装有一打(12个)乒乓球,其中9个新的,3个旧的(用过的球即为旧的),从盒中任取3个使用,用完后装回盒中,此时盒中旧球个数记为X,求X的概率分布例5从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求X的概率分布例6为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,方差为(1)求n,p的值并写出的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率三、课堂演练1、随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元设1件产品的利润(单位:万元)为(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?2、某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试假设某学生每次通过测试的概率都是,每次测试时间间隔恰当,每次测试通过与否互相独立 (1)求该学生考上大学的概率 (2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为,求的分布列及的数学期望3、一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2 (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望3、口袋中有个白球,3个红球依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球记取球的次数为X若,求(1)n的值;(2)X的概率分布与数学期望3、某中学选派名同学参加上海世博会青年志愿者服务队(简称“青志队”),他们参加活动的次数统计如表所示()从“青志队”中任意选名学生,求这名同学中至少有名同学参加活动次数恰好相等的概率; ()从“青志队”中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望活动次数参加人数3、在一次电视节目的抢答中,题型为判断题,只有“对”和“错”两种结果,其中某明星判断正确的概率为,判断错误的概率为,若判断正确则加1分,判断错误则减1分,现记“该明星答完题后总得分为” (1)当时,记,求的分布列及数学期望及方差;w.w.w.k.s.5.u.c.o.m (2)当时,求的概率3、袋中有大小相同的三个球,编号分别为1、2和3,从袋中每次取出一个球,若取到的球的编号为偶数,则把该球编号加1(如:取到球的编号为2,改为3)后放回袋中继续取球;若取到球的编号为奇数,则取球停止,用表示所有被取球的编号之和()求的概率分布;()求的数学期望与方差3、某小组有6个同学,其中4个同学从来没有参加过数学研究性学习活动,2个同学曾经参加过数学研究性学习活动. (1)现从该小组中任

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论