第2章概率.doc_第1页
第2章概率.doc_第2页
第2章概率.doc_第3页
第2章概率.doc_第4页
第2章概率.doc_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学教案 选修2-3第2章 概率课 题2.1.1随机变量及其概率分布课 时第一课时教 学目 标知识与技能:了解随机变量和离散型随机变量的意义.过程与方法:理解取有限值的离散型随机变量及其概率分布的概念.情感、态度与价值观:理解取有限值的离散型随机变量及其概率分布的概念.教学重点教学难点随机变量的概念。概率分布的两中形式。教具准备:与教材内容相关的资料。教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。活动教学过程:学生探究过程:问题情境1.在一块地里种下10棵树苗,成活的树苗棵数X是0,1,2,10中的某个数;2.抛一颗骰子,向上的点数Y是1,2,3,4,5,6中的某一个数;3.新生婴儿的性别,抽查的结果可能是男,也可能是女。如果将男婴用0表示,女婴用1表示,那么抽查的结果Z是0和1中的某个数;学生活动:上述现象有哪些共同点?二、构建数学1.随机变量 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量。2.随机变量表示 3.概率分布(1)、概率分布列(2)、概率分布表三、数学应用例1、(1) 掷一枚质地均匀的硬币一次,用X表示掷得正面的次数,则随机变量X的可能取值有哪些?(2) 一实验箱中装有标号为1,2,3,3,4的五只白鼠,从中任取一只,记取到的白鼠的标号为Y,则随机变量Y的可能取值有哪些?例2、从装有6只白球和4只红球的口袋中任取一只球,用X表示“取到的白球个数”,即 求随机变量X的概率分布。巩固练习:书本第48页 练习 1,2 课外作业:第52页 习题 2. 2 1教学反思:1.了解随机变量和离散型随机变量的意义.2.理解取有限值的离散型随机变量及其概率分布的概念.3.理解取有限值的离散型随机变量及其概率分布的概念.课 题2.1.2随机变量及其概率分布课 时第二课时教 学目 标知识与技能:会求出某些简单的离散型随机变量的概率分布。过程与方法:认识概率分布对于刻画随机现象的重要性。情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。教学重点教学难点概率分布的具体求法。求随机变量的值在某一区间的概率的方法。教具准备:与教材内容相关的资料。教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。活动教学过程:学生探究过程:复习回顾1. 随机变量及其概率分布2. 两点分布例题讲解例1、 同时掷质地均匀的骰子,观察朝上一面出现的点数.求两颗子中出现的最大点数X的概率分布,并求X大于2小于5的概率P(2X0,则事件B已发生的条件下A发生的条件概率是 。数学应用例1、抛掷一颗质地均匀的骰子所得的样本空间为S=1,2,3,4,5,6,令事件A=2,3,5,B=1,2,4,5,6,求P(A),P(B),P(AB),P(AB)。例2、一个正方形被平均分成9个部分,向大正方形区域随机地投掷一个点(每次都能投中),设投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,求P(AB),P(AB)。例3、在一个盒子中有大小一样的20个球,其中10和红球,10个白球。求第1个人摸出1个红球,紧接着第2个人摸出1个白球的概率。巩固练习: 课本55页练习1、2课外作业:第64页 习题 2. 4 1 ,2 ,3教学反思:1. 通过对具体情景的分析,了解条件概率的定义。2. 掌握一些简单的条件概率的计算。3. 通过对实例的分析,会进行简单的应用。课 题2.3.2独立性-事件的独立性 事件的独立性第二课时教 学目 标知识与技能:理解两个事件相互独立的概念。过程与方法:能进行一些与事件独立有关的概率的计算。情感、态度与价值观:通过对实例的分析,会进行简单的应用。教学重点教学难点独立事件同时发生的概率。有关独立事件发生的概率计算。教具准备:与教材内容相关的资料。教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。活动教学过程:学生探究过程:复习引入: 条件概率与概率的计算抛掷一枚质地均匀的硬币两次。问:在第一次出现正面向上的条件下,第二次出现正面向上的概率是多少?构建数学1. 独立事件一般地,若事件A,B满足P(AB)=P(A),则称事件A,B独立。2. 计算公式P(AB)=P(A)P(B)。推广:若事件A1,A2,A3,An相互独立,则这n个事件同时发生的概率P(A1A2An)=P(A1)P(A2)P(An).数学应用例1、求证:若事件与相互独立,则事件与也相互独立.例2、如图,用X,Y,Z三类不同的元件连接成系统N,当元件X,Y,Z都正常工作时,系统N正常工作,已知元件X,Y,Z正常工作的概率依次为0.80,0.90,0.90,求系统N正常工作的概率P.例3、加工某一零件共须两道工序,若第一、二道工序的不合格品率分别为3和5,假定各道工序是互不影响的,问:加工出来的零件是不合格品的概率是多少?巩固练习: 课本59页练习1、2、3课外作业:第64页 习题 2. 4 4、5、6教学反思:1. 理解两个事件相互独立的概念。2. 能进行一些与事件独立有关的概率的计算。3. 通过对实例的分析,会进行简单的应用。课 题2.4二项分布n次独立重复试验的模型及二项分布教 学目 标知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。教学重点教学难点理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。教具准备:与教材内容相关的资料。教学设想:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。活动教学过程:学生探究过程:引入课本P60引例:掷一枚图钉,针尖向上的概率为0.6,则针尖向下的概率为 10.6=0.4 问题(1)第1次、第2次、第3次第n次针尖向上的概率是多少?第1次、第2次、第3次第n次针尖向上的概率都是0.6新课 : 1、形成概念“独立重复试验”的概念:在同样条件下进行的,各次之间相互独立的一种试验。特点:在同样条件下重复地进行的一种试验;各次试验之间相互独立,互相之间没有影响;每一次试验只有两种结果,即某事要么发生,要么不发生,并且任意一次试验中发生的概率都是一样的。问题(2):掷一枚图钉,针尖向上的概率为0.6,则针尖向下的概率为10.6=0.4,则连续掷3次,恰有1次针尖向上的概率是多少? 分解问题(2)问题a 3次中恰有1次针尖向上,有几种情况?即共有3种情况: , ,问题b 它们的概率分别是多少?概率都是问题c 3次中恰有1次针尖向上的概率是多少?引申推广:连续掷n次,恰有k次针尖向上的概率是2定义:在n次独立重复试验中,事件A发生的次数为X,在每次试验中事件A发生的概率为P,那么在在n次独立重复试验中事件A恰好发生k次的概率是K=0,1,2,3,n此时称随机变量X服从二项分布,记作XB(n,p)。并称P为成功概率。注:(1)n,p,k分别表示什么意义?(2)这个公式和前面学习的哪部分内容有类似之处? 例题:某射手每次射击击中目标的概率是0.8 。求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有2次击中目标的概率;(3)射中目标的次数X的分布列. (4)要保证击中目标概率大于0.99,至少应射击多少次?(结果保留两个有效数字)(解略)例2: (生日问题)假定人在一年365天中的任一天出生的概率相同。问题(1):某班有50个同学,至少有两个同学今天过生日 的概率是多少?(解略)问题(2):某班有50个同学,至少有两个同学生日相同的概率是多少? 解:设A“50人中至少2人生日相同”,则 “50人生日全不相同”解:设A“50人中至少2人生日相同”, 则 =“50人生日全不相同”巩固练习: 课本63页 练习1、2、3课外作业:第64页 习题 2. 4 8、9、10教学反思:1. 理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。2. 能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。3. 承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。课 题:2.5.1随机变量的均值和方差-离散型随机变量的均值教学目的:知识与技能:了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望 过程与方法:理解公式“E(a+b)=aE+b”,以及“若B(n,p),则E=np”.能熟练地应用它们求相应的离散型随机变量的期望。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 教学重点:离散型随机变量的期望的概念。教学难点:根据离散型随机变量的分布列求出期望。教具准备:多媒体、实物投影仪 。教学设想:理解公式“E(a+b)=aE+b”,以及“若B(n,p),则E=np”.能熟练地应用它们求相应的离散型随机变量的期望教学过程:学生探究过程:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母、等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若是随机变量,是常数,则也是随机变量 并且不改变其属性(离散型、连续型) 5. 分布列:设离散型随机变量可能取得值为x1,x2,x3,取每一个值xi(i=1,2,)的概率为,则称表x1x2xiPP1P2Pi为随机变量的概率分布,简称的分布列 6. 分布列的两个性质: Pi0,i1,2,; P1+P2+=17.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数是一个随机变量如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k0,1,2,,n,)于是得到随机变量的概率分布如下:01knP称这样的随机变量服从二项分布,记作B(n,p),其中n,p为参数,并记b(k;n,p)8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数也是一个正整数的离散型随机变量“”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么(k0,1,2,, )于是得到随机变量的概率分布如下:123kP称这样的随机变量服从几何分布记作g(k,p)= ,其中k0,1,2,, 讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望解:因为,所以例2. 随机抛掷一枚骰子,求所得骰子点数的期望解:,=3.5例3. 有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字)解:抽查次数取110的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前次取出正品而第次(=1,2,10)取出次品的概率:(=1,2,10)需要抽查10次即前9次取出的都是正品的概率:由此可得的概率分布如下:123456789100.150.12750.10840.0920.07830.06660.05660.04810.04090.2316根据以上的概率分布,可得的期望例4. 一次英语单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望 解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则 B(20,0.9), 由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5 所以,他们在测验中的成绩的期望分别是: 例5随机的抛掷一个骰子,求所得骰子的点数的数学期望解:抛掷骰子所得点数的概率分布为123456P所以 123456(123456)3.5抛掷骰子所得点数的数学期望,就是的所有可能取值的平均值巩固练习:1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则( )A4;B5;C4.5;D4.75 答案:C 2. 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分已知某运动员罚球命中的概率为0.7,求他罚球1次的得分的数学期望;他罚球2次的得分的数学期望;他罚球3次的得分的数学期望解:因为,所以10的概率分布为012P所以 0121.4 的概率分布为23P所以 0122.1.3设有m升水,其中含有大肠杆菌n个今取水1升进行化验,设其中含有大肠杆菌的个数为,求的数学期望分析:任取1升水,此升水中含一个大肠杆菌的概率是,事件“=k”发生,即n个大肠杆菌中恰有k个在此升水中,由n次独立重复实验中事件A(在此升水中含一个大肠杆菌)恰好发生k次的概率计算方法可求出P(=k),进而可求E.解:记事件A:“在所取的1升水中含一个大肠杆菌”,则P(A)=P(=k)=Pn(k)=C)k(1)nk(k=0,1,2,.,n)B(n,),故E =n= 课后作业:1.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是 (用数字作答)解:令取取黄球个数 (=0、1、2)则的要布列为 012p于是 E()=0+1+2=0.8故知红球个数的数学期望为1.22.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数求的概率分布列求的数学期望解:依题意的取值为0、1、2、3、4=0时,取2黑 p(=0)=1时,取1黑1白 p(=1)=2时,取2白或1红1黑p(=2)= +=3时,取1白1红,概率p(=3)= =4时,取2红,概率p(=4)= 01234p 分布列为(2)期望E=0+1+2+3+4=3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p1、p2、p3,求试验中三台投影仪产生故障的数学期望解:设表示产生故障的仪器数,Ai表示第i台仪器出现故障(i=1、2、3)表示第i台仪器不出现故障,则:p(=1)=p(A1)+ p(A2)+ p(A3)=p1(1p2) (1p3)+ p2(1p1) (1p3)+ p3(1p1) (1p2)= p1+ p2+p32p1p22p2p32p3p1+3p1p2p3p(=2)=p(A1 A2)+ p(A1)+ p(A2A3) = p1p2 (1p3)+ p1p3(1p2)+ p2p3(1p1)= p1p2+ p1p3+ p2p33p1p2p3p(=3)=p(A1 A2A3)= p1p2p3 =1p(=1)+2p(=2)+3p(=3)= p1+p2+p3 注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是 1.2 解:从5个球中同时取出2个球,出现红球的分布列为012P教学反思: (1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量的期望的基本步骤:理解的意义,写出可能取的全部值;求取各个值的概率,写出分布列;根据分布列,由期望的定义求出E 公式E(a+b)= aE+b,以及服从二项分布的随机变量的期望E=np 。课 题:2.5.1随机变量的均值和方差方差和标准差教学目的:知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。过程与方法:了解方差公式“D(a+b)=a2D”,以及“若(n,p),则D=np(1p)”,并会应用上述公式计算有关随机变量的方差 。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。教学重点:离散型随机变量的方差、标准差教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题教具准备:多媒体、实物投影仪 。教学设想:了解方差公式“D(a+b)=a2D”,以及“若(n,p),则D=np(1p)”,并会应用上述公式计算有关随机变量的方差 。教学过程:学生探究过程:复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母、等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 5. 分布列: x1x2xiPP1P2Pi6. 分布列的两个性质: Pi0,i1,2,; P1+P2+=17.二项分布:B(n,p),并记b(k;n,p)01knP8.几何分布: g(k,p)= ,其中k0,1,2,, 123kP9.数学期望: 一般地,若离散型随机变量的概率分布为x1x2xnPp1p2pn则称 为的数学期望,简称期望10. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 11 平均数、均值:在有限取值离散型随机变量的概率分布中,令,则有,所以的数学期望又称为平均数、均值 12. 期望的一个性质: 13.若B(n,p),则E=np 讲解新课: 1. 方差: 对于离散型随机变量,如果它所有可能取的值是,且取这些值的概率分别是,那么,称为随机变量的均方差,简称为方差,式中的是随机变量的期望2. 标准差:的算术平方根叫做随机变量的标准差,记作3.方差的性质:(1);(2);(3)若B(n,p),则np(1-p) 4.其它:随机变量的方差的定义与一组数据的方差的定义式是相同的;随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛讲解范例:例1设随机变量的分布列为12nP求D 解:(略) 例2已知离散型随机变量的概率分布为1234567P离散型随机变量的概率分布为3738394414243P求这两个随机变量期望、均方差与标准差解:;=0.04, .点评:本题中的和都以相等的概率取各个不同的值,但的取值较为分散,的取值较为集中,方差比较清楚地指出了比取值更集中2,=0.02,可以看出这两个随机变量取值与其期望值的偏差 例3. 甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平解:+(10-9);同理有由上可知,所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些点评:本题中,和所有可能取的值是一致的,只是概率的分布情况不同=9,这时就通过=0.4和=0.8来比较和的离散程度,即两名射手成绩的稳定情况 例4A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A机床B机床次品数10123次品数10123概率P0.70.20.060.04概率P0.80.060.040.10问哪一台机床加工质量较好解: E1=00.7+10.2+20.06+30.04=0.44, E2=00.8+10.06+20.04+30.10=0.44.它们的期望相同,再比较它们的方差D1=(0-0.44)20.7+(1-0.44)20.2+(2-0.44)20.06+(3-0.44)20.04=0.6064,D2=(0-0.44)20.8+(1-0.44)20.06+(2-0.44)20.04+(3-0.44)20.10=0.9264.D1 D2 故A机床加工较稳定、质量较好. 巩固练习: 1 .已知,则的值分别是( )A;B;C;D 答案:1.D 2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止求在取得正品之前已取出次品数的期望分析:涉及次品率;抽样是否放回的问题本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件解:设取得正品之前已取出的次品数为,显然所有可能取的值为0,1,2,3当=0时,即第一次取得正品,试验停止,则P(=0)=当=1时,即第一次取出次品,第二次取得正品,试验停止,则P(=1)=当=2时,即第一、二次取出次品,第三次取得正品,试验停止,则P(=2)=当=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P(=3)=所以,E= 3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为,求E,D解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以B(200,1%)因为E=np,D=npq,这里n=200,p=1%,q=99%,所以,E=2001%=2,D=2001%99%=1.98课后作业: 1.设B(n、p)且E=12 D=4,求n、p解:由二次分布的期望与方差性质可知E=np D= np(1p) 2.已知随机变量服从二项分布即B(6、)求b (2;6,)解:p(=2)=c62()2()43.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量和,已知和 的分布列如下:(注得分越大,水平越高) 123pa0.10.6123p0.3b0.3试分析甲、乙技术状况解:由0.1+0.6+a+1a=0.3 0.3+0.3+b=1a=0.4E=2.3 , E=2.0 D=0.81 , D=0.6 教学反思:求离散型随机变量的方差、标准差的步骤:理解的意义,写出可能取的全部值;求取各个值的概率,写出分布列;根据分布列,由期望的定义求出E;根据方差、标准差的定义求出、.若B(n,p),则不必写出分布列,直接用公式计算即可对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要 课 题:2.6.1正态分布教学目的:知识与技能:掌握正态分布在实际生活中的意义和作用 。过程与方法:结合正态曲线,加深对正态密度函数的理理。情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质 。教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。教学难点:通过正态分布的图形特征,归纳正态曲线的性质。教具准备:多媒体、实物投影仪 。教学设想:在总体分布研究中我们选择正态分布作为研究的突破口,正态分布在统计学中是最基本、最重要的一种分布。教学过程:学生探究过程:复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线它反映了总体在各个范围内取值的概率根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:式中的实数、是参数,分别表示总体的平均数与标准差,函数称为正态函数,的图象称为正态曲线讲解新课: 1正态分布密度函数:,(0)其中是圆周率;e是自然对数的底;x是随机变量的取值;为正态分布的均值;是正态分布的标准差.正态分布一般记为 2正态分布)是由均值和标准差唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响 3通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质 4正态曲线的性质:(1)曲线在x轴的上方,与x轴不相交 (2)曲线关于直线x=对称 (3)当x=时,曲线位于最高点 (4)当x时,曲线上升(增函数);当x时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近 (5)一定时,曲线的形状由确定 越大,曲线越“矮胖”,总体分布越分散;越小曲线越“瘦高”总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学 5标准正态曲线:当=0、=l时,正态总体称为标准正态总体,其相应的函数表示式是,(-x+)其相应的曲线称为标准正态曲线 标准正态总体N(0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题 讲解范例:例1给出下列三个正态总体的函数表达式,请找出其均值和标准差 ()()()答案:(1)0,1;(2)1,2;(3)-1,0.5 例2求标准正态总体在(-1,2)内取值的概率解:利用等式有=0.97720.84131=0.8151巩固练习:书本第77页 1 , 2课后作业: 书本第78页 习题2. 6 1 , 2教学反思:1在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 正态分布在统计学中是最基本、最重要的一种分布 2正态分布是可以用函数形式来表述的 其密度函数可写成:, (0)由此可见,正态分布是由它的平均数和标准差唯一决定的 常把它记为 3从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=,并在x=时取最大值 从x=点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的 4通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。由于正态分布是由其平均数和标准差唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难 但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为,x(-,+),从而使正态分布的研究得以简化。结合正态曲线的图形特征,归纳正态曲线的性质 正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质。课 题:2.6.2正态分布教学目的:知识与技能:利用标准正态分布表求得标准正态总体在某一区间内取值的概率。过程与方法:掌握正态分布与标准正态分布的转换。情感、态度与价值观:了解正态总体的分布情况,简化正态总体的研究问题 。教学重点:利用标准正态分布表求得标准正态总体在某一区间内取值的概率。教学难点:非标准正态总体在某区间内取值的概率及总体在(,) 的概率求法。教具准备:多媒体、实物投影仪 。教学设想:了解正态总体的分布情况,简化正态总体的研究问题 。教学过程:学生探究过程:复习引入: 1.总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线它反映了总体在各个范围内取值的概率根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积 2正态分布密度函数:,(0)其中是圆周率;e是自然对数的底;x是随机变量的取值;为正态分布的均值;是正态分布的标准差.正态分布一般记为 2正态分布)是由均值和标准差唯一决定的分布3正态曲线的性质:(1)曲线在x轴的上方,与x轴不相交 (2)曲线关于直线x=对称 (3)当x=时,曲线位于最高点 (4)当x时,曲线上升(增函数);当x时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近 (5)一定时,曲线的形状由确定 越大,曲线越“矮胖”,总体分布越分散;越小曲线越“瘦高”总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学 4标准正态曲线:当=0、=l时,正态总体称为标准正态总体,其相应的函数表示式是,(-x+)其相应的曲线称为标准正态曲线 标准正态总体N(0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题 讲解新课:1.标准正态总体的概率问题: 对于标准正态总体N(0,1),是总体取值小于的概率,即 ,其中,图中阴影部分的面积表示为概率 只要有标准正态分布表即可查表解决.从图中不难发现:当时,;而当时,(0)=0.5 2.标准正态分布表标准正态总体在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”在这个表中,对应于的值是指总体取值小于的概率,即 ,若,则利用标准正态分布表,可以求出标准正态总体在任意区间内取值的概率,即直线,与正态曲线、x轴所围成的曲边梯形的面积 3非标准正态总体在某区间内取值的概率:可以通过转化成标准正态总体,然后查标准正态分布表即可 在这里重点掌握如何转化 首先要掌握正态总体的均值和标准差,然后进行相应的转化 4.小概率事件的含义 发生概率一般不超过5的事件,即事件在一次试验中几乎不可能发生 假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析 假设检验方法的操作程序,即“三步曲” 一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a值是否落入(-3,+3);三是作出判断 讲解范例:例1. 若xN(0,1),求(l)P(-2.32x2).解:(1)P(-2.32x2)=1-P(x2)=1-F(2)=l-0.9772=0.0228. 例2利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求 (2)在N(,2)下,求(,);(1.84,1.84);(2,2);(3,3)解:()(1)0.8413()()(1)0.8413()(1)(1)0.84130.1587(,)()()0.84130.15870.6826(1.84,1.84)(1.84)(1.84)0.9342(2,2)(2)(2)0.954(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论