




已阅读5页,还剩59页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12 1归纳与类比 基础知识自主学习 课时作业 题型分类深度剖析 内容索引 基础知识自主学习 1 归纳推理 知识梳理 根据一类事物中具有某种属性 推断该类事物中 都有这种属性 我们将这种推理方式称为归纳推理 简言之 归纳推理是由到 由到的推理 归纳推理的基本模式 a b c M且a b c具有某属性 结论 任意d M d也具有某属性 部分事物 每一个事物 部分 整体 个别 一般 2 类比推理由于具有某些类似的特征 在此基础上 根据的其他特征 推断也具有类似的其他特征 我们把这种推理 两类不同对象 一类对象 另一类对象 过程称为类比推理 简言之 类比推理是两类事物特征之间的推理 类比推理的基本模式 A 具有属性a b c d B 具有属性a b c 结论 B具有属性d a b c d与a b c d 相似或相同 3 归纳推理和类比推理是最常见的合情推理 合情推理的结果 4 演绎推理是根据已知的事实和正确的结论 按照严格的逻辑法则得到新结论的推理过程 不一定正确 判断下列结论是否正确 请在括号中打 或 1 归纳推理得到的结论不一定正确 类比推理得到的结论一定正确 2 由平面三角形的性质推测空间四面体的性质 这是一种合情推理 3 在类比时 平面中的三角形与空间中的平行六面体作为类比对象较为合适 4 所有3的倍数都是9的倍数 某数m是3的倍数 则m一定是9的倍数 这是三段论推理 但其结论是错误的 5 一个数列的前三项是1 2 3 那么这个数列的通项公式是an n n N 6 在演绎推理中 只要符合演绎推理的形式 结论就一定正确 考点自测 1 观察下列各式 a b 1 a2 b2 3 a3 b3 4 a4 b4 7 a5 b5 11 则a10 b10等于A 28B 76C 123D 199 答案 解析 从给出的式子特点观察可推知 等式右端的值 从第三项开始 后一个式子的右端值等于它前面两个式子右端值的和 依据此规律 a10 b10 123 答案 解析 2 下面几种推理过程是演绎推理的是 A D是归纳推理 B是类比推理 C符合三段论模式 故选C 3 2017 济南质检 类比平面内 垂直于同一条直线的两条直线互相平行 的性质 可得出空间内的下列结论 垂直于同一个平面的两条直线互相平行 垂直于同一条直线的两条直线互相平行 垂直于同一个平面的两个平面互相平行 垂直于同一条直线的两个平面互相平行 则正确的结论是 答案 解析 显然 正确 对于 在空间中垂直于同一条直线的两条直线可以平行 也可以异面或相交 对于 在空间中垂直于同一个平面的两个平面可以平行 也可以相交 4 教材改编 在等差数列 an 中 若a10 0 则有a1 a2 an a1 a2 a19 n n 19 n N 成立 类比上述性质 在等比数列 bn 中 若b9 1 则存在的等式为 答案 解析 利用类比推理 借助等比数列的性质 b1b2 bn b1b2 b17 n n 17 n N 答案 解析 题型分类深度剖析 题型一归纳推理 命题点1与数字有关的等式的推理例1 2016 山东 观察下列等式 答案 解析 命题点2与不等式有关的推理 第一个式子是n 1的情况 此时a 11 1 第二个式子是n 2的情况 此时a 22 4 第三个式子是n 3的情况 此时a 33 27 归纳可知a nn nn 答案 解析 命题点3与数列有关的推理 答案 解析 可以推测N n k 的表达式 由此计算N 10 24 1000 由N n 4 n2 N n 6 2n2 n 可以推测 当k为偶数时 1100 100 1000 命题点4与图形变化有关的推理例4 2017 大连月考 某种树的分枝生长规律如图所示 第1年到第5年的分枝数分别为1 1 2 3 5 则预计第10年树的分枝数为 由2 1 1 3 1 2 5 2 3知 从第三项起 每一项都等于前两项的和 则第6年为8 第7年为13 第8年为21 第9年为34 第10年为55 故选D 答案 解析 A 21B 34C 52D 55 归纳推理问题的常见类型及解题策略 1 与数字有关的等式的推理 观察数字特点 找出等式左右两侧的规律及符号可解 2 与不等式有关的推理 观察每个不等式的特点 注意是纵向看 找到规律后可解 3 与数列有关的推理 通常是先求出几个特殊现象 采用不完全归纳法 找出数列的项与项数的关系 列出即可 4 与图形变化有关的推理 合理利用特殊图形归纳推理得出结论 并用赋值检验法验证其真伪性 思维升华 跟踪训练1 1 2015 陕西 观察下列等式 据此规律 第n个等式可为 答案 解析 2 2016 抚顺模拟 观察下图 可推断出 x 处应该填的数字是 答案 解析 183 由前两个图形发现 中间数等于四周四个数的平方和 x 处应填的数字是32 52 72 102 183 题型二类比推理 答案 解析 答案 解析 1 进行类比推理 应从具体问题出发 通过观察 分析 联想进行类比 提出猜想 其中找到合适的类比对象是解题的关键 2 类比推理常见的情形有平面与空间类比 低维的与高维的类比 等差数列与等比数列类比 数的运算与向量的运算类比 圆锥曲线间的类比等 思维升华 跟踪训练2在平面上 设ha hb hc是三角形ABC三条边上的高 P为三角形内任一点 P到相应三边的距离分别为Pa Pb Pc 我们可以得到结论 1 把它类比到空间 则三棱锥中的类似结论为 设ha hb hc hd分别是三棱锥A BCD四个面上的高 P为三棱锥A BCD内任一点 P到相应四个面的距离分别为Pa Pb Pc Pd 答案 解析 题型三演绎推理 证明 设x1 x2 R 且x1 x2 则由题意得x1f x1 x2f x2 x1f x2 x2f x1 x1 f x1 f x2 x2 f x2 f x1 0 f x2 f x1 x2 x1 0 x10 f x2 f x1 f x 为R上的单调增函数 解答 f x y f 6 演绎推理是由一般到特殊的推理 常用的一般模式为三段论 演绎推理的前提和结论之间有着某种蕴含关系 解题时要找准正确的大前提 一般地 若大前提不明确时 可找一个使结论成立的充分条件作为大前提 思维升华 跟踪训练3 1 某国家流传这样的一个政治笑话 鹅吃白菜 参议员先生也吃白菜 所以参议员先生是鹅 结论显然是错误的 是因为A 大前提错误B 小前提错误C 推理形式错误D 非以上错误 答案 解析 因为大前提 鹅吃白菜 不是全称命题 大前提本身正确 小前提 参议员先生也吃白菜 本身也正确 但不是大前提下的特殊情况 鹅与人不能类比 所以不符合三段论推理形式 所以推理形式错误 2 2016 洛阳模拟 下列四个推导过程符合演绎推理三段论形式且推理正确的是A 大前提 无限不循环小数是无理数 小前提 是无理数 结论 是无限不循环小数B 大前提 无限不循环小数是无理数 小前提 是无限不循环小数 结论 是无理数C 大前提 是无限不循环小数 小前提 无限不循环小数是无理数 结论 是无理数D 大前提 是无限不循环小数 小前提 是无理数 结论 无限不循环小数是无理数 答案 解析 A中小前提不是大前提的特殊情况 不符合三段论的推理形式 故A错误 C D都不是由一般性命题到特殊性命题的推理 所以C D都不正确 只有B正确 故选B 合情推理在近年来的高考中 考查频率逐渐增大 题型多为选择 填空题 难度为中档 解决此类问题的注意事项与常用方法 1 解决归纳推理问题 常因条件不足 了解不全面而致误 应由条件多列举一些特殊情况再进行归纳 2 解决类比问题 应先弄清所给问题的实质及已知结论成立的缘由 再去类比另一类问题 高考中的合情推理问题 高频小考点10 考点分析 典例 1 传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数 他们研究过如图所示的三角形数 b2014是数列 an 的第 项 答案 解析 5035 将三角形数1 3 6 10 记为数列 an 将可被5整除的三角形数按从小到大的顺序组成一个新数列 bn 可以推测 b2k 1 用k表示 答案 解析 2 设S T是R的两个非空子集 如果存在一个从S到T的函数y f x 满足 1 T f x x S 2 对任意x1 x2 S 当x1 x2时 恒有f x1 f x2 那么称这两个集合 保序同构 以下集合对不是 保序同构 的是 A N B N A x 1 x 3 B x x 8或0 x 10 A x 0 x 1 B R A Z B Q 答案 解析 对于 取f x x 1 x N 所以A N B N是 保序同构 的 故排除 所以A x 1 x 3 B x x 8或0 x 10 是 保序同构 的 故排除 课时作业 1 2 3 4 5 6 7 8 9 10 11 推理形式正确 但大前提错误 故得到的结论错误 故选A 1 若大前提是 任何实数的平方都大于0 小前提是 a R 结论是 a2 0 那么这个演绎推理出错在A 大前提B 小前提C 推理过程D 没有出错 答案 解析 2 下列推理是归纳推理的是A A B为定点 动点P满足 PA PB 2a AB 则P点的轨迹为椭圆B 由a1 1 an 3n 1 求出S1 S2 S3 猜想出数列的前n项和Sn的表达式C 由圆x2 y2 r2的面积 r2 猜想出椭圆 1的面积S abD 科学家利用鱼的沉浮原理制造潜艇 答案 解析 从S1 S2 S3猜想出数列的前n项和Sn 是从特殊到一般的推理 所以B是归纳推理 故应选B 1 2 3 4 5 6 7 8 9 10 11 3 正弦函数是奇函数 f x sin x2 1 是正弦函数 因此f x sin x2 1 是奇函数 以上推理A 结论正确B 大前提不正确C 小前提不正确D 全不正确 答案 解析 f x sin x2 1 不是正弦函数 所以小前提错误 1 2 3 4 5 6 7 8 9 10 11 4 2016 泉州模拟 正偶数列有一个有趣的现象 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 按照这样的规律 则2016所在等式的序号为A 29B 30C 31D 32 答案 解析 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 5 给出下列三个类比结论 ab n anbn与 a b n类比 则有 a b n an bn loga xy logax logay与sin 类比 则有sin sin sin a b 2 a2 2ab b2与 a b 2类比 则有 a b 2 a2 2a b b2 其中正确结论的个数是A 0B 1C 2D 3 答案 解析 1 2 3 4 5 6 7 8 9 10 11 故 错误 由向量的运算公式知 正确 a b n an bn n 1 a b 0 故 错误 sin sin sin 不恒成立 6 把正整数按一定的规则排成如图所示的三角形数表 设aij i j N 是位于这个三角形数表中从上往下第i行 从左往右数第j个数 如a42 8 若aij 2009 则i与j的和为 107 由题可知奇数行为奇数列 偶数行为偶数列 2009 2 1005 1 所以2009为第1005个奇数 又前31个奇数行内数的个数为961 前32个奇数行内数的个数为1024 故2009在第32个奇数行内 则i 63 因为第63行第1个数为2 962 1 1923 2009 1923 2 j 1 所以j 44 所以i j 107 1 2 3 4 5 6 7 8 9 10 11 答案 解析 1 2 3 4 5 6 7 8 9 10 11 答案 解析 则P1 P2的切线方程分别是 设P1 x1 y1 P2 x2 y2 因为P0 x0 y0 在这两条切线上 1 2 3 4 5 6 7 8 9 10 11 答案 解析 1 2 3 4 5 6 7 8 9 10 11 R1 R2 则类似的结论为 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 解答 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 n 2 Sn n Sn 1 Sn 即nSn 1 2 n 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目出资合同协议书范本
- 物流公司的采购合同范本
- 门面房车位出租合同范本
- 消防施工协议合同书范本
- 汉中酒店承包联营协议书
- 电商app开发合同范本
- 申请延期的补充合同范本
- 派出所门面出租合同范本
- 父子结婚房子协议书范本
- 污泥处理外包合同协议书
- 青少年心理发展与教育(硕士)
- 账号归属公司合同协议书
- 小学三年级数学附加题100道附答案(完整版)
- 异构网络连接融合
- 中考专题之《非连续性文本阅读攻略》课件55张
- 高尿酸血症的护理措施
- 产能规划方案
- 居家养老上门服务投标方案(技术方案)
- GB/T 4437.1-2023铝及铝合金热挤压管第1部分:无缝圆管
- 合同诈骗罪起诉状
- 公路工程勘察设计投标方案(技术方案)
评论
0/150
提交评论