《轴对称》备课教案.doc_第1页
《轴对称》备课教案.doc_第2页
《轴对称》备课教案.doc_第3页
《轴对称》备课教案.doc_第4页
《轴对称》备课教案.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级数学上册第十三章轴对称备课教案13.1.1轴对称第1课时教学目标1、通过丰富的实例认识轴对称图形,并能找出轴对称图形的对称轴2、了解轴对称图形、两个图形成轴对称这两个概念之间的联系和区别3、经历丰富材料的学习过程,发展对图形的观察、分析、判断、等能力4、体验数学与生活的联系、发展审美观教学重难点重点:轴对称的有关概念;难点:轴对称图形与两个图形关于某条直线对称这两个概念之间的联系与区别教学过程一、创设情境,引入新课1.举实例说明对称的重要性和生活中充满着对称.2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!二、导入新课1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.练习:从学生生活周围的事物中来找一些具有对称特征的例子.2.观察:如图13.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就剪出了美丽的窗花.你能发现它们有什么共同的特点吗?3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)对称.4.动手操作:取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?5.归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.6.练习:你能找出它们的对称轴吗?分小组讨论.思考:大家想一想,你发现了什么?小结得出:.像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三、随堂练习课本60页练习.四、课时小结这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.五、课后作业课本64页习题13.1的第1、2题.六教学反思数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象第2课时教学目标1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.2. 探索并理解线段垂直平分线的两个性质3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力逐步养成数学推理的习惯.4.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.教学重难点重点:轴对称的性质,线段垂直平分线的性质.难点: 由线段垂直平分线的两个性质得出的“点的集合”的描述教学过程一、创设情境,引入新课1.什么样的图形是轴对称图形呢?2.轴对称图形有哪些性质,从图形中能得到结论?二、导入新课1. 如图,ABC和ABC关于直线MN对称,点A、B、C分别是点A、B、C对称点,线段AA、BB、CC与直线MN有什么关系?为什么?(学生思考并做小范围讨论)2.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.3.画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.4.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.5.归纳图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.下面我们来探究线段垂直平分线的性质.探究1如图,木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,是L上的点,分别量一量点P1,P2,P3,到A与B的距离,你有什么发现?证法一:利用判定两个三角形全等.如图,在APC和BPC中,APCBPCPA=PB.证法二:利用轴对称性质.由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的.带着探究1的结论我们来看下面的问题.探究2如图,用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?探究结论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.三、随堂练习如图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?四、课时小结这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.五、课后作业课本65页习题13.1的第3、4题.六教学反思本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等13.1.2线段的垂直平分线的性质教学目标知识与技能1.探索作出轴对称图形的对称轴的方法.掌握轴对称图形对称轴的作法.2.在探索的过程中,培养学生分析、归纳的能力.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称图形对称轴的作法.难点:探索轴对称图形对称轴的作法.【教学过程】一、提出问题,引入新课1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,你能比较准备地作出轴对称图形的对称轴吗?2.轴对称图形性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.4.问题:如何作出线段的垂直平分线?二、导入新课要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.例1尺规作图:经过已知直线外一点作这条直线的垂线已知:直线AB和AB外一点C.(如下图)求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使点K和点C在AB的两旁 (2)以点C为圆心,CK长为半径作弧,交AB于点D和点E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F.(4)作直线CF.直线CF就是所求作的垂线根据上面作法中的步骤,想一想,为什么直线CF就是所求作的垂线?请与同伴进行交流例2:如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?已知:线段AB如图(1).求作:线段AB的垂直平分线.作法:如图(2)(1)分别以点A、B为圆心,以大于AB的长为半径作弧,两弧相交于C和D两点;(2)作直线CD.直线CD就是线段AB的垂直平分线.三、随堂练习如图,与图形A成轴对称的是哪个图形?画出它们的对称轴. AB CD答案:与A成轴对称的是图形D(或B).四、课时小结本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形一条对称轴的方法:找出轴对称图形的任意一对对应点,连接这对对应点,作出连线的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴.五、课后作业课本65页习题13.1的第5、10、11、12题.六教学反思通过前两节的学习,这节画对称轴的习题课就可以全部交由学生自己完成画轴对称图形的对称轴就是利用两个对称点找到对称轴,即画出这对对应点连线的垂直平分线,让学生用尺规作图,独立完成132画轴对称图形第1课时教学目标1能够作轴对称图形;2通过实际操作,掌握作轴对称图形的方法3能够用轴对称的知识解决相应的数学问题教学重难点重点:能够按要求作出简单平面图形经过一次对称后的图形难点:较复杂图形的轴对称图形的画法教学过程一、问题导入我们前面学习了轴对称图形以及轴对称图形的一些相关的性质如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法二、探究新知活动在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印这时,右脚印和左脚印成轴对称,折痕所在的直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分类似地,请你再将一个图形做一做,看看能否得到同样的结论(1)认真观察,左脚印和右脚印有什么关系?(成轴对称)(2)对称轴是折痕所在的直线,即直线l,它与图中的线段PP是什么关系?(直线l垂直平分线段PP)思考1如何画一个点的对称图形?例1画出点A关于直线l的对称点A.画法:(1)过点A作对称轴l的垂线,垂足为B;(2)延长AB到A,使得BAAB.点A就是点A关于直线l的对称点思考2如何画一条直线的对称图形?例2已知线段AB,画出AB关于直线l的对称线段画法: (1)画出点A关于直线l的对称点A.(2)画出点B关于直线l的对称点B.(3)连接点A和点B成线段AB.线段AB即为所求思考3如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?例3如图,已知ABC和直线l,画出与ABC关于直线l对称的图形画法:(1)过点A画直线l的垂线,垂足为O,在垂线上截取OAOA,A就是点A关于直线l的对称点(2)同理,分别画出点B,C关于直线l的对称点B,C.(3)连接AB,BC,CA,则ABC即为所求三、课堂练习1教材第68页练习第1,2题2下列图形中,点P与P关于直线MN对称的图形是()四、课堂小结几何图形都可以看成由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到图形的对称图形五布置作业:教材习题13.2第1题六.课后反思几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形第2课时教学目标1能在直角坐标系中画点关于坐标轴的对称点2能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标3.能够经过探索利用坐标来表示轴对称;教学重难点重点:用坐标表示点关于坐标轴对称的点的坐标难点:找对称点的坐标之间的关系教学过程一、问题导入教材图13.23是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?二、探究新知(1)【探究1】(1)在直角坐标系中画出下列已知点A(2,3),B(1,2),C(6,5),D(3,5),E(4,0),F(0,3);(2)画出这些点分别关于x轴、y轴对称的点,并填写表格;(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的已知点A(2,3)B(1,2)C(6,5)D(,1)E(4,0)关于x轴的对称点关于y轴的对称点归纳:关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数(2)【探究2】在同一平面直角坐标系内描出以上各点关于y轴的对称点并写出坐标,观察关于y轴对称的两个点的坐标有什么规律?归纳:关于y轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数(3)【探究3】按以上规律,说出点P(x,y)关于x轴的对称点P1的坐标,再说出P1关于y轴的对称点P2坐标观察点P经过两次轴对称所得点P2的坐标有什么规律?归纳:一个点经历关于x轴、y轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数在以后学了“中心对称”后,两点被称为关于原点对称三、举例分析例1:已知A(2,a),B(b,4),分别根据下列条件求a,b的值(1)A,B关于y轴对称;(2)A,B关于x轴对称;(3)A,C关于x轴对称,B,C关于y轴对称解析:(1)A,B关于y轴对称,说明纵坐标相同,横坐标相反,a4,b2;(2)A,B关于x轴对称,说明横坐标相同,纵坐标相反,a4,b2;(3)A,C关于x轴对称,B,C关于y轴对称,说明A,B经过x轴、y轴两次对称变换,即关于原点对称,横、纵坐标各互为相反数,a4,b2.例2:如下图,四边形ABCD的四个顶点的坐标分别为A(5,1),B(2,1),C(2,5),D(5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形学生独立完成,教师用多媒体出示出正确答案并讲评四、课堂巩固教材第70页练习第1,2.3题五、课堂小结(1)点关于某条直线对称的点的坐标可以通过寻找线段之间的关系来求(2)点(x,y)关于x轴对称的点的坐标为(x,y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(x,y)即横坐标互为相反数,纵坐标相等六.布置作业教材习题13.2第3,4题七:课后反思本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣其中归纳规律后检验其正确性是科学研究问题的一个必不可少的步骤,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标133.1等腰三角形第1课时教学目标1理解并掌握等腰三角形的性质2运用等腰三角形的性质进行证明和计算3观察等腰三角形的对称性、发展形象思维教学重难点重点:等腰三角形的性质及应用难点:等腰三角形的性质的证明教学过程一、情境导入教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形引入今天所要讲的课题等腰三角形我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形二、探究新知(一)活动1:如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的ABC有什么特点?1.学生活动:学生动手操作,从剪出的图形观察ABC的特点,可以发现ABAC.2.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角如下图(二)活动2:把活动1中剪出的ABC沿折痕AD对折,找出其中重合的线段,填入下表:重合的线段重合的角 从上表中你能发现等腰三角形具有什么性质吗?1.学生活动:学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质2.教师活动:引导学生归纳性质1等腰三角形的两个底角相等(简写成“等边对等角”);性质2等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)(三)活动3:你能用所学知识验证上述性质吗?如图,在ABC中,ABAC.求证:BC.证明:作BC边上的中线AD,如图在ABD和ACD中,所以ABDACD(SSS),所以BC.三、应用提高例1如图,在ABC中,ABAC,点D在AC上,且BDBCAD,求ABC各角的度数1.学生活动:小组合作,分组讨论、交流2.教师活动:引导学生分析图形中关于角的数量关系(三角形的内角、外角,等腰三角形的底角)四、课堂小结(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线)五布置作业:教材习题13.3第1,3,7题六课后反思本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的第2课时教学目标1理解并掌握等腰三角形的判定方法2运用等腰三角形的判定进行证明和计算教学重难点重点:等腰三角形的判定方法难点:等腰三角形的判定方法的证明教学过程一、提出问题出示教材第77页“思考”学生思考,回答后教师提问:在一般三角形中,如果有两个角相等,那么它们所对的边有什么关系?学生猜想它们所对的边相等即如果一个三角形有两个角相等,那么这两个角所对的边也相等二、解决问题教师引导提示,学生根据提示画出图形,并写出已知、求证已知:在ABC中,BC.求证:ABAC.如图,在ABC中,BC,作ABC的角平分线AD.在BAD和CAD中, BADCAD(AAS),ABAC.结论:归纳等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”三、应用举例1出示教材例2.引导学生根据命题画出图形,利用角平分线的性质及“等边对等角”来证明学生讨论后,自己完成证明过程例2求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形已知:CAE是ABC的外角,12,ADBC.(如图所示)求证:ABAC.分析:要证明ABAC.可先证明BC.因为12,所以可以设法找出B,C与1,2的关系证明:ADBC,1B(_),2C(_)而已知12,所以BC.ABAC(_)2出示教材例3.让学生自学例3.例3已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形作法:(1)作线段ABa.(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DCh.(4)连接AC,BC,则ABC就是所求作的等腰三角形四、课堂小结1等腰三角形的判定方法是什么?2等腰三角形的性质与判定既有区别又有联系,你能总结一下吗?五、布置作业教材习题13.3第2,8,10题六课后反思学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想133.2等边三角形第1课时教学目标1掌握等边三角形的定义2理解等边三角形的性质与判定教学重难点重点:等边三角形的性质和判定难点:等边三角形的性质的应用教学过程一、问题引入在等腰三角形中,如果底边与腰相等,会得到什么结论?二、自主探究1等边三角形的定义底边和腰相等的等腰三角形叫做等边三角形2思考:把等腰三角形的性质用于等边三角形,能得到什么结论?一个三角形的三个内角满足什么条件才是等边三角形?(1)边:三条边都相等(2)角:三个角都相等,并且每一个角都等于60.3在ABC中,ABC,你能得到ABBCCA吗?为什么?你从中能得到什么结论?结论:三个角都相等的三角形是等边三角形4在ABC中,ABAC,A60.(1)求证:ABC是等边三角形;(2)如果把A60改为B60或C60,那么结论还成立吗?(3)由上你可以得到什么结论?结论:有一个角是60的等腰三角形是等边三角形5.小结:等边三角形的性质和判定(1) 等边三角形三个角都相等,并且每一个角都等于60(2)三个角都相等的三角形是等边三角形(3)有一个角是60的等腰三角形是等边三角形三、应用举例1教材例4.例4如图,ABC是等边三角形,DEBC,分别交AB,AC于点D,E.求证:ADE是等边三角形证明:ABC是等边三角形,ABC.DEBC,ADEB,AEDC,AADEAED,ADE是等边三角形2归纳:在判定三角形是等边三角形时:(1)若三角形是一般三角形,只要找三个角相等或三条边相等;(2)若三角形是等腰三角形,一般是找一个角等于60.四、巩固练习1.教材第80页练习第1,2题2.补充题:(1)如图,已知等边ABC,点D,E,F分别是各边上的一点,且ADBECF.求证:DEF是等边三角形(2)如图,已知等边ABC,点D是AC的中点,且CECD,DFBE.求证:BFEF.教师提出要求,补充题1,2可以让学生板书过程五、总结提高小结:通过本节课的学习,你了解到了等边三角形有哪些特点?(1) 等边三角形三个角都相等,并且每一个角都等于60(2)三个角都相等的三角形是等边三角形(3)有一个角是60的等腰三角形是等边三角形六布置作业:教材习题13.3第12,14题七.课后反思教学中设计了两个问题:把等腰三角形的性质用于等边三角形,你能得到什么结论?类似地,你又能得到哪些等边三角形的判定方法?让学生先自主探索再合作交流,小组内、小组间充分讨论后概括所得结论这既巩固应用等腰三角形的知识,又类比探索等边三角形性质定理和判定定理的方法,并使学生加深对等腰三角形与等边三角形的联系与区别的理解第2课时教学目标1掌握含30角的直角三角形的性质与应用2通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。教学重难点重点:含30角的直角三角形的性质难点:含30角的直角三角形性质的推导教学过程一、情境导入将两个含30的三角尺摆放在一起,你能借助这个图形,找出RtABC的直角边BC与斜边AB之间的关系吗?二、探究新知由题意可判定ABD是等边三角形,且AC为边BD上的高,可得BCCDAB.1.教师归纳:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半你能证明这一结论吗?让学生从以下两个途径探索:(1)ABD是等边三角形,ACBD于点C,则BAD_度,BC_BD_AB.(2)在ABC中,若ACBC,A30,则B_度,延长BC到点D,使BDAB,连接AD,则ABD是等边三角形,BC_以上结论是直角三角形的性质之一,在以后的证明和计算中经常用到2.思考:逆命题:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30”是否成立?3.课堂练习在ABC中,ACB90,A30,CDAB,AB4,则BC_,BCD_,BD_小明沿倾斜角为30的山坡从山脚步行到山顶,共走了200 m,求山的高度三、举例分析,出示教材例5.例5如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB7.4 m,A30.立柱BC,DE要多长?解:DEAC,BCAC,A30,BCAB,DEAD.BC7.43.7(m)又ADAB,DEAD3.71.85(m)答:立柱BC的长是3.7 m,DE的长是1.85 m.教师引导学生寻找图中含有30角的直角三角形,并选择BC,DE所在直角三角形由学生口答后,找学生完成板书,其他同学对照四、课堂小结学生小结,教师梳理本节课的知识点,强调含30的直角三角形性质的应用五、布置作业1.教材习题13.3第15题2.补充练习:(1)如图,已知RtABC中,A30,ACB90,BD平分ABC,求证:AD2DC.(2)如图,已知ABC中,ABAC,C30,ABAD,AD2 cm,求BC的长六课后反思本节课我采用从生活中创设情境来激发学生们的学习兴趣,采用拼图形的方法创设问题的情境,引导学生自主探究活动,培养学生用类比、猜想、论证的研究方法研究问题,培养学生善于动手、善于观察、善于思考的学习习惯,使学生在自主探索和合作交流中理解和掌握本节课的内容134课题学习最短路径问题教

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论