题目审定表.doc

JX1021TS3轻型货车驱动桥设计【6张CAD图纸和说明书全套终稿】

收藏

压缩包内文档预览:
预览图
编号:50731630    类型:共享资源    大小:2.06MB    格式:ZIP    上传时间:2020-02-22 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
6张CAD图纸和说明书全套终稿 JX1021TS3 轻型 货车 驱动 设计 CAD 图纸 说明书 全套
资源描述:

购买设计请充值后下载,,资源目录下的文件所见即所得,都可以点开预览,,资料完整,充值下载就能得到。。。【注】:dwg后缀为CAD图,doc,docx为WORD文档,有不明白之处,可咨询Q:414951605

内容简介:
SY-025-BY-2毕业设计(论文)任务书学生姓名黄静系部汽车与交通工程学院专业、班级车辆工程B07-1指导教师姓名朱荣福职称讲师从事专业车辆工程是否外聘是否题目名称JX1021TS3轻型货车驱动桥设计一、设计(论文)目的、意义 近年来,轻卡的产销量总体保持稳步增长态势,从市场需求空间看,轻卡销售量远大于重卡、中卡和微卡,在卡车市场占有绝对量的优势。轻型汽车在汽车生产中占有大的比重。驱动桥在整车中十分重要,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展。所以本题设计一款结构优良的轻型货车驱动桥具有一定的实际意义。二、设计(论文)内容、技术要求(研究方法)(一)设计内容驱动桥结构方案确定;主减速器的结构设计、基本参数选择及设计计算;差速器齿轮的基本参数的选择、几何及强度计算;驱动半轴的结构设计及强度计算;驱动桥壳的结构设计及受力分析与强度计算。(二)研究方法1、 参考相关资料,对比各种驱动桥优缺点,初步确定设计方案。2、 实地考察相关类型的车,为最终设计方案提供依据。3、 利用Autocad软件建立轻型货车驱动桥二维图纸。三、设计(论文)完成后应提交的成果(一)计算说明部分完成设计说明书1.5万字。其中包括主减速器的结构设计、基本参数选择及设计计算;差速器齿轮的基本参数的选择、几何及强度计算;驱动半轴的结构设计及强度计算;驱动桥壳的结构设计及受力分析与强度计算。(二)图纸部分驱动桥装配图零件图若干张,共计折合3张A0图纸。四、设计(论文)进度安排1、第一周 选题,领取任务书2、第二周第三周 撰写开题报告,开题答辩3、第四周 确定总体方案5、第五周第七周 计算、校核,绘制草图准备中期答辩8、第八周第十周 精确计算、绘制总装配图11、第十一周第十三周 绘制汽车零件图14、第十四周 撰写设计说明书15、第十五周 修改图纸及设计说明书16、第十六周 准备答辩17、第十七周 毕业答辩五、参考文献1 陈家瑞. 汽车构造M. 北京:机械工业出版社,2003.2 余志生. 汽车理论M. 北京:机械工业出版社, 2008.3 成大先机械设计手册(14册)M.北京:化学工业出版社,1993.4 刘惟信.汽车设计M.北京:清华大学出版社,2001.5 机械设计手册编委会.齿轮传动(单行本)M. 北京:机械工业出版社,2007.6 尹国臣.浅析汽车驱动桥主减速器的装配与调整J.科学教育家,2007,(10).7 汽车工程手册编辑委员会.汽车工程手册M:设计篇.北京:人民交通出版社,2001.8 li-Ping,Jeong Kim,Beom-Soo Kang. Analysis and design of hydroforming proess for automobile rear axle housing by FEMJ. Internation Journal of Machine Tools & Manufacture,2000, (4).六、备注指导教师签字:年 月 日教研室主任签字: 年 月 日毕业设计(论文)过程管理材料题 目JX1021TS3轻型货车驱动桥设计学生姓名黄静系部名称汽车与交通工程学院专业班级车辆工程B07-1指导教师朱荣福职 称讲师教研室起止时间2011.2.28-2011.6.24教 务 处 制SY-025-BY-3毕业设计开题报告学生姓名黄静系部汽车与交通工程学院专业、班级车辆工程 B07-1指导教师姓名朱荣福职称讲师从事专业车辆工程是否外聘是否题目名称JX1021TS3轻型货车驱动桥设计一、课题研究现状,选题的目的、依据和意义1、研究现状国外发达国家如美国、德国等,载货汽车中轻型货车占有较大比重,一般在70%80%,轻型汽车大多为私人用车,用于短途小件物品的运营。国外轻型货车驱动桥开发技术已经非常的成熟,建立新的驱动桥开发模式成为国内外驱动桥开发团体的新目标。驱动桥设计新方法的应用使得其开发周期缩短,成本降低,可靠性增加。国外的最新开发模式和驱动桥新技术包括:并行工程开发模式、模态分析、驱动桥壳的有限元分析方法、高性能制动器技术、电子智能控制技术进入驱动桥产品;相应的这些先进的开发模式和新技术在国内也逐渐的受到重视并发展起来。在我国轻型货车同样占有较大市场,据中国汽车工业协会统计,截至2007年底,国内轻型货车(1.8吨总质量6吨)共销售100.53万辆,同比增长了17.64%。2008年,国家对“三农”的投入不断加大,同时随着铁路不断提速也为“门到门”的短途运输提供了机会,受此影响,轻型货车在以后几年也会呈现明显增长。回眸近几年中国载货车市场,经过2007年的蛰伏,2008年的调整,终于在2009年引发出新一轮的高速增长,这对于需求结构已经发生根本性变化的载货车企业而言,是难得的商机再现,同时又是更加激烈的市场博弈。而在这种博弈中,中国载货车市场竞争格局也在发生显著的变化。市场调研显示,2010年一季度国内轻卡累计销售50万辆,同比增长47.6%,环比09年4季度增长17.4%。2009年轻卡旺销主要是养路费取消和汽车下乡政策共同作用的效果,2010年1季度轻卡市场的持续火爆则主要源于经济刺激政策带动下的各行各业的景气程度的全面复苏。中国载货车市场,曾经以“中卡”为主导,“缺重少轻”,在这种背景下,一度出现东风与一汽两强对弈的竞争格局。伴随着载货车市场需求结构变化和产品结构的调整,载货车市场竞争,由“中卡”演化成重卡、中卡、轻卡、微卡等领域的多元竞争态势。中国载货车市场竞争,也因此由粗放走向细分,各细分市场的竞争格局异彩纷呈。近年来,轻卡的产销量总体保持稳步增长态势,从市场需求空间看,轻卡销售量远大于重卡、中卡和微卡,在卡车市场占有绝对量的优势。因此,“轻卡”市场绝对不可轻视。从一定意义上讲,轻型车的发展对于拉动商用车市场总量的增长具有举足轻重的影响。目前,纳入行业统计的轻卡生产企业达40多家,就竞争实力而言,销售排名前五位的依次是北汽福田、东风公司、安徽江淮、山东凯马、江西江铃。我国汽车驱动桥的研究设计与世界先进驱动桥设计技术还有一定的差距,我国车桥制造业虽然有一些成果,但都是在引进国外技术、仿制、再加上自己改进的基础上了取得的。个别比较有实力的企业,虽有自己独立的研发机构但都处于发展的初期。在科技迅速发展的推动下,高新技术在汽车领域的应用和推广,各种国外汽车新技术的引进,研究团队自身研发能力的提高,我国的驱动桥设计和制造会逐渐发展起来,并跟上世界先进的汽车零部件设计制造技术水平。2、依据、目的和意义我国2010年上半年货车(含非完整车辆、半挂牵引车)累计生产2037074辆,累计销售2084608辆,销售同比累计增长47.32%,其中轻型货车累计产销量1036264辆,同比累计增长38.97%,可见轻型汽车在商用汽车生产中占有很大的比重。而且驱动桥在整车中十分重要,汽车驱动桥是汽车的重要总成,承载着汽车车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,并且通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能,所以本题设计一款结构优良的轻型货车驱动桥具有一定的实际意义。二、设计的基本内容、拟解决的主要问题1、研究的基本内容(1)研究驱动桥组成、结构、原理; (2) 主减速器的结构设计,基本参数选择及设计计算;(3) 差速器齿轮的基本参数的选择、尺寸及强度计算;(4) 驱动半轴的结构设计及强度计算;(5) 驱动桥壳的结构设计及受力分析与强度计算。2、拟解决的主要问题(1)驱动桥结构形式及布置方案的确定。(2)驱动桥零部件尺寸参数确定及校核。(3)完成驱动桥驱动桥装配图和主要部分零件图。三、技术路线(研究方法)调研、收集资料参考相关资料,对比各种驱动桥优缺点N利用Autocad完成驱动桥主要部分零件图 完成设计说明书检查修改错误完成毕业设计设计驱动桥零部件尺寸参数初步确定设计方案强度是否满足要求Y利用Autocad完成驱动桥装配图四、设计进度安排(1)调研、资料收集、完成开题报告 第1、2周(3月1日3月13日)(2)确定总体方案 第3、4周(3月14日3月27日) (3)对驱动桥结构进行设计、计算 第5、6周(3月28日4月10日)(4)对驱动桥主要零部件进行设计并画出草图 第7、8周(4月11日4月24日)(5)做进一步计算校核绘制驱动桥的装配图 第9、10周(4月25日5月8日) (6)绘制驱动桥零件图 第11、12周(5月9日5月22日) (7)书写设计说明书 第13、14周(5月23日6月5日)(8)设计审核、修改 第15、16周(6月6日6月19日)(9)毕业设计答辩准备及答辩 第17周(6月20日6月26日)五、参考文献1 刘惟信.汽车车桥设计M.北京:清华大学出版社,2004.2 余志生. 汽车理论M. 北京:机械工业出版社, 2008.3 陈家瑞. 汽车构造M. 北京:机械工业出版社,2003.4 刘惟信.汽车设计M.北京:清华大学出版社,2001.5 机械设计手册编委会.齿轮传动(单行本)M. 北京:机械工业出版社,2007.6 成大先机械设计手册(14册)M.北京:化学工业出版社,1993.7 汽车工程手册编辑委员会.汽车工程手册M:设计篇.北京:人民交通出版社,2001.8 尹国臣.浅析汽车驱动桥主减速器的装配与调整J.科学教育家,2007,(10).9 肖文颖,王书翰.普通锥齿轮差速器行星齿轮的力学分析J.科技资讯,2007,(11).10 安晓娟,彭彦宏,郝春光.主减速器齿轮的失效分析J.拖拉机与农用运输车,2007,(8).11 彭彦宏,吕晓霞,陆有. 差速器圆锥齿轮的失效分析J. 金属热处理,2006,(4).12 陈珂,殷国富,汪永超.汽车后桥差速器齿轮结构设计优化研究J. 机械传动,2008, (4).13 付建红.载重汽车后桥半轴的技术改进J. 新余高专学报,2006,(2).14 周小平.避免驱动桥半轴扭断的工艺改进J. 新余高专学报,2005,(10).15 杨朝会,王丰元,马浩.基于有限元法驱动桥壳分析J. 农业装备与车辆工程,2006,(10)16 li-Ping,Jeong Kim,Beom-Soo Kang. Analysis and design of hydroforming proess for automobile rear axle housing by FEMJ. Internation Journal of Machine Tools & Manufacture,2000, (4).17 WANG Liang-mo,WANG He-fu,CHEN Jin-rong,LING Zhi-liang,CAO Yu-hua.Development of a Test Machine for IVECO Drive AxleJ. International Journal of Plant Engineering and Management,2007, (1).六、备注指导教师意见:签字: 年 月 日毕业论文指导教师评分表学生姓名黄静院系汽车与交通工程学院专业、班级车辆工程B07-1指导教师姓名朱荣福职称讲师从事专业车辆工程是否外聘是否题目名称JX1021TS3轻型货车驱动桥设计序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;选题的理论意义或实际价值103查阅文献资料能力;综合运用知识能力154研究方案的设计能力;研究方法和手段的运用能力;外文应用能力255文题相符程度;写作水平156写作规范性;篇幅;成果的理论或实际价值;创新性157科学素养、学习态度、纪律表现;毕业论文进度10得 分 X= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)工作态度: 好 较好 一般 较差 很差研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少规范性: 好 较好 一般 较差 很差成果质量(研究方案、研究方法、正确性):好 较好 一般 较差 很差其他: 指导教师签字: 年 月 日毕业设计指导教师评分表学生姓名黄静院系汽车与交通工程学院专业、班级车辆工程B07-1指导教师姓名朱荣福职称讲师从事专业车辆工程是否外聘是否题目名称JX1021TS3轻型货车驱动桥设计序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;题目与工程实践、社会实际、科研与实验室建设等的结合程度103综合运用知识能力(设计涉及学科范围,内容深广度及问题难易度);应用文献资料能力154设计(实验)能力;计算能力(数据运算与处理能力);外文应用能力205计算机应用能力;对实验结果的分析能力(或综合分析能力、技术经济分析能力)106插图(图纸)质量;设计说明书撰写水平;设计的实用性与科学性;创新性207设计规范化程度(设计栏目齐全合理、SI制的使用等)58科学素养、学习态度、纪律表现;毕业论文进度10得 分 X= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)工作态度: 好 较好 一般 较差 很差研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 指导教师签字: 年 月 日 毕业论文评阅人评分表学生姓名黄静专业班级车辆工程B07-1指导教师姓名朱荣福职称讲师题目JX1021TS3轻型货车驱动桥设计评阅组或预答辩组成员姓名臧杰 朱荣福 纪峻岭 鲍宇 孙远涛出席人数4序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度152题目工作量;选题的理论意义或实际价值103查阅文献资料能力;综合运用知识能力204研究方案的设计能力;研究方法和手段的运用能力;外文应用能力255文题相符程度;写作水平156写作规范性;篇幅;成果的理论或实际价值;创新性15得 分 Y= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少规范性: 好 较好 一般 较差 很差成果质量(研究方案、研究方法、正确性):好 较好 一般 较差 很差其他: 评阅人或预答辩组长签字: 年 月 日注:毕业设计(论文)评阅可以采用2名评阅教师评阅或集体评阅或预答辩等形式。 毕业设计评阅人评分表学生姓名黄静专业班级车辆工程B07-1指导教师姓名朱荣福职称讲师题目 JX1021TS3轻型货车驱动桥设计评阅组或预答辩组成员姓名臧杰 朱荣福 纪峻岭 鲍宇 孙远涛出席人数4序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;题目与工程实践、社会实际、科研与实验室建设等的结合程度103综合运用知识能力(设计涉及学科范围,内容深广度及问题难易度);应用文献资料能力154设计(实验)能力;计算能力(数据运算与处理能力);外文应用能力255计算机应用能力;对实验结果的分析能力(或综合分析能力、技术经济分析能力)156插图(图纸)质量;设计说明书撰写水平;设计的实用性与科学性;创新性207设计规范化程度(设计栏目齐全合理、SI制的使用等)5得 分 Y= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 评阅人或预答辩组长签字: 年 月 日注:毕业设计(论文)评阅可以采用2名评阅教师评阅或集体评阅或预答辩等形式。毕业论文答辩评分表学生姓名黄静专业班级车辆工程B07-1指导教师朱荣福职 称讲师题目 JX1021TS3轻型货车驱动桥设计答辩时间月 日 时答辩组成员姓名臧杰 朱荣福 纪峻岭 鲍宇 孙远涛出席人数4序号评 审 指 标满分得分1选题与专业培养目标的符合程度,综合训练情况,题目难易度、工作量、理论意义或价值102研究方案的设计能力、研究方法和手段的运用能力、综合运用知识的能力、应用文献资料和外文的能力203论文撰写水平、文题相符程度、写作规范化程度、篇幅、成果的理论或实际价值、创新性154毕业论文答辩准备情况55毕业论文自述情况206毕业论文答辩回答问题情况30总 分 Z= 答辩过程记录、评语:自述思路与表达能力:好 较好 一般 较差 很差回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少规范性: 好 较好 一般 较差 很差成果质量(研究方案、研究方法、正确性):好 较好 一般 较差 很差其他: 答辩组长签字: 年 月 日毕业设计答辩评分表学生姓名黄静专业班级车辆工程B07-1指导教师朱荣福职 称讲师题目 JX1021TS3轻型货车驱动桥设计答辩时间月 日 时答辩组成员姓名臧杰 朱荣福 纪峻岭 鲍宇 孙远涛出席人数4序号评 审 指 标满分得分1选题与专业培养目标的符合程度,综合训练情况,题目难易度、工作量、与实际的结合程度102设计(实验)能力、对实验结果的分析能力、计算能力、综合运用知识能力103应用文献资料、计算机、外文的能力104设计说明书撰写水平、图纸质量,设计的规范化程度(设计栏目齐全合理、SI制的使用等)、实用性、科学性和创新性155毕业设计答辩准备情况56毕业设计自述情况207毕业设计答辩回答问题情况30总 分 Z= 答辩过程记录、评语:自述思路与表达能力:好 较好 一般 较差 很差回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 答辩组长签字: 年 月 日毕业设计(论文)成绩评定表学生姓名黄静性别女院系汽车与交通工程学院专业车辆工程班级B07-1设计(论文)题目JX1021TS3轻型货车驱动桥设计平时成绩评分(开题、中检、出勤)指导教师姓名职称指导教师评分(X)评阅教师姓名职称评阅教师评分(Y)答辩组组长职称答辩组评分(Z)毕业设计(论文)成绩百分制五级分制答辩委员会评语:答辩委员会主任签字(盖章): 院系公章: 年 月 日注:1、平时成绩(开题、中检、出勤)评分按十分制填写,指导教师、评阅教师、答辩组评分按百分制填写,毕业设计(论文)成绩百分制=W+0.2X+0.2Y+0.5Z 2、评语中应当包括学生毕业设计(论文)选题质量、能力水平、设计(论文)水平、设计(论文)撰写质量、学生在毕业设计(论文)实施或写作过程中的学习态度及学生答辩情况等内容的评价。优秀毕业设计(论文)推荐表题 目JX1021TS3轻型货车驱动桥设计类别设计学生姓名黄静院(系)、专业、班级汽车与交通工程学院 车辆工程 B07-1指导教师朱荣福职 称讲师设计成果明细:答辩委员会评语:答辩委员会主任签字(盖章): 院、系公章: 年 月 日备 注: 注:“类别”栏填写毕业论文、毕业设计、其它本科学生毕业设计JX1021TS3轻型货车驱动桥设计 院系名称: 汽车与交通工程学院 专业班级: 车辆工程 B07-1班 学生姓名: 黄 静 指导教师: 朱荣福 职 称: 讲 师 黑 龙 江 工 程 学 院二一一年六月The Graduation Design for Bachelors DegreeDesign of Pickup Truck Driving Axle Candidate:Huang JingSpecialty:VehicleEngineeringClass:B07-1Supervisor:Lecturer. Zhu RongfuHeilongjiang Institute of Technology2011-06Harbin黑龙江工程学院本科生毕业设计摘 要轻型汽车在商用汽车生产中占有很大的比重,而且驱动桥在整车中十分重要。驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载货汽车显得尤为重要。为满足目前当前载货汽车的快速、高效率、高效益需要的同时时,必须要搭配一个高效、可靠的驱动桥。设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本的轻型货车驱动桥具有一定的实际意义。本设计首先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用单级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用圆锥行星齿轮差速器,半轴采用全浮式型式,桥壳采用铸造整体式桥壳。在本次设计中,主要完成了单级减速器、圆锥行星齿轮差速器、全浮式半轴的设计和桥壳的校核及材料选取等工作。最后运用AUTOCAD完成装配图和主要零件图的绘制。关键词:轻型货车;驱动桥;单级主减速器;差速器;半轴;桥壳53ABSTRACTPickup trucks take a large proportion of commercial vehicles production, and the drive axle is one of the most important structure. Drive axle is the one of automobile four important assemblies, Its performance directly influence on the entire automobile, especially for the truck .Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded, high efficiency, high benefit today truck, must exploiting the high driven efficiency single reduction final drive axle is becoming the trucks developing tendency. Design a simple, reliable, low cost of the drive axle, can greatly reduce the total cost of vehicle production, so the title of the fine structure of the design of a pickup vehicle drive axle has a certain practical significance.The configuration of the Driving Axle is introduced in the thesis at first. On the basis of the analysis of the structure and the developing process of Driving Axle, the design adopted the Integral Driving Axle, Single Reduction Gear for Main Decelerators deceleration form, Spiral Bevel Gear for Main Decelerators gear, Full Floating for Axle and Casting Integral Axle Housing for Axle Housing. In the design, we accomplished the design for Double Reduction Gear, tapered Planetary Gear Differential Mechanism, Full Floating Axle, the checking of Axle Housing and the election of the material and so on. Finally complete the final assembly drawing by using AUTOCAD and mapping the main components.In this paper, first of all determine the structure of major components and the main design parameters, the analysis of the various parts of the structure of the bridge drive type, the form of the development process and its advantages and disadvantages of the past, determined on the basis of the design program, using the traditional design method of various parts of the drive axle Main reducer, differential, axle, axle housing was designed to calculate and complete the check. Finally complete the final assembly drawing by using AUTOCAD and mapping the main components. Keywords: Pickup truck; Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing 目 录摘要IAbstractII第1章 绪论11.1 选题的背景目的及意义11.2 国内外驱动桥研究状况11.3 设计主要内容3第2章 驱动桥的总体方案确定42.1驱动桥的种类结构和设计要求42.1.1汽车车桥的种类42.1.2驱动桥的种类42.1.3驱动桥结构组成42.1.4 驱动桥设计要求52.1.5设计车型主要参数52.2主减速器结构方案的确定62.2.1 主减速比的计算62.2.2 主减速器的齿轮类型72.2.3 主减速器的减速形式82.2.4 主减速器主从动锥齿轮的支承形式及安装方法92.3 差速器结构方案的确定112.4半轴的形式确定112.5 桥壳形式的确定122.6本章小结13第3章 主减速器设计143.1概述143.2主减速器齿轮参数的选择与强度计算143.2.1 主减速器计算载荷的确定143.2.2 主减速器齿轮参数的选择153.2.3 主减速器齿轮强度计算183.2.4 主减速器轴承计算243.3主减速器齿轮材料及热处理303.4主减速器的润滑313.5 本章小结31第4章 差速器设计324.1概述324.2对称式圆锥行星齿轮差速器原理324.3 对称式圆锥行星齿轮差速器的结构334.4对称圆锥行星锥齿轮差速器的设计344.4.1 差速器齿轮的基本参数选择344.4.2 差速器齿轮的几何尺寸计算364.4.3 差速器齿轮的强度计算37 4.4.4 差速器齿轮的材料39 4.5 本章小结39第5章 半轴及驱动桥桥壳的设计405.1概述405.2半轴的设计与计算405.2.1全浮式半轴的计算载荷的确定405.2.2半轴杆部直径的初选425.2.3 全浮式半轴强度计算425.2.4 全浮式半轴花键强度计算435.2.5 半轴材料与热处理445.3桥壳的受力分析及强度计算445.3.1桥壳的静弯曲应力计算455.3.2在不平路面冲击载荷作用下桥壳的强度465.3.3 汽车以最大牵引力行驶时的桥壳的强度计算465.3.4汽车紧急制动时的桥壳强度计算485.3.5汽车受最大侧向力时桥壳强度计算485.4 本章小结51结论52参考文献53致谢54附录A55附录B58第1章 绪 论1.1 选题背景目的及意义根据中国轻型货车行业市场深度调研及中期发展预测报告表明:2008年中国轻型货车行业发展迅速,产品产出持续扩张,国家产业政策鼓励轻型货车产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对轻型货车行业的关注越来越密切,这使得轻型货车行业的发展研究需求增大。2009-2012年是中国轻型货车行业发展的关键时期,也是我国从“十一五”迈向“十二五”的过渡期,在全球金融危机风暴大环境及国内严峻经济形势下,一系列新的政策将会陆续出台,对轻型货车行业的发展必将产生重大影响;一批国家重大工程项目陆续开工建设,对轻型货车行业需求市场必将产生极大的拉动作用。作为汽车关键零部件之一的汽车驱动桥也得到相应的发展,各生产厂家在研发和生产过程中基本上形成了专业化、系列化、批量化的局面,汽车驱动桥是汽车的重要总成,承载着汽车车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。因此,设计出结构简单、工作可靠、造价低廉的驱动桥,具有一定的实际意义1。1.2 国内外驱动桥研究状况1、国内研究现状我国驱动桥制造企业的开发模式主要由测绘、引进、自主开发三种组成。主要存在技术含量低,开发模式落后,技术创新力不够,计算机辅助设计应用少等问题。一些企业技术力量相对要好些的企业,测绘的是从国外引进的原装桥,并且这些企业一般具有较为完善的开发体系和流程,也具有较完善的试验手段,但是开发过程属于对国外的仿制,对其逆向研究后结合自我情况生产。总之,我国汽车驱动桥的研究设计与世界先进驱动桥设计技术还有一定的差距,我国车桥制造业虽然有一些成果,但都是在引进国外技术、纺制、再加上自己改进的基础上了取得的。个别比较有实力的企业,虽有自己独立的研发机构但都处于发展的初期。在科技迅速发展的推动下,高新技术在汽车领域的应用和推广,各种国外汽车新技术的引进,研究团队自身研发能力的提高,我国的驱动桥设计和制造会逐渐发展起来,并跟上世界先进的汽车零部件设计制造技术水平。2、国外研究现状国外轻型货车驱动桥开发技术已经非常的成熟,建立新的驱动桥开发模式成为国内外驱动桥开发团体的新目标。驱动桥设计新方法的应用使得其开发周期缩短,成本降低,可靠性增加。国外的最新开发模式和驱动桥新技术包括:(1)并行工程开发模式 并行工程开发模式是对在一定范围内的不同功能或相同功能不同性能、不同规格的机械产品进行功能分析的基础上,划分并设计出一系列功能模块,然后通过模块的选择和组合构成不同产品的一种设计方法,能够缩短新产品的设计时间、降低成本、提升质量、提高市场竞争力,以DANA为代表的意大利企业多已采用了该类设计方法, 优点是: 减少设计及工装制造的投入, 减少了零件种类, 提高规模生产程度, 降低制造费用, 提高市场响应速度等。(2)模态分析 模态分析是对工程结构进行振动分析研究的最先进的现代方法与手段之一。它可以定义为对结构动态特性的解析分析(有限元分析)和实验分析(实验模态分析),其结构动态特性用模态参数来表征。模态分析技术的特点与优点是在对系统做动力学分析时,用模态坐标代替物理学坐标,从而可大大压缩系统分析的自由度数目,分析精度较高。驱动桥的振动特性不但直接影响其本身的强度,而且对整车的舒适性和平顺性有着至关重要的影响。因此,对驱动桥进行模态分析,掌握和改善其振动特性,是设计中的重要方面。(3)驱动桥壳的有限元分析方法 有限元法不需要对所分析的结构进行严格的简化,既可以考虑各种计算要求和条件,也可以计算各种工况,而且计算精度高。有限元法将具有无限个自由度的连续体离散为有限个自由度的单元集合体,使问题简化为适合于数值解法的问题。只要确定了单元的力学特性,就可以按照结构分析的方法求解,使分析过程大为简化,配以计算机就可以解决许多解析法无法解决的复杂工程问题。目前,有限元法己经成为求解数学、物理、力学以及工程问题的一种有效的数值方法,也为驱动桥壳设计提供了强有力的工具。(4)高性能制动器技术 在发达国家驱动桥产品中, 已出现了自循环冷却功能的湿式制动器桥、带散热风送的盘式制动器桥、适于ABS的蹄、鼓式和盘式制动器桥、带自动补偿间隙的盘式制动器等配置高性能制动器桥, 同时制动器的布置位置也出现了从桥臂处分别向桥包总成和轮边端部转移的趋势。前种处理方式易于散热, 后种处理方式为了降低成本, 甚至有厂商把制动器的壳体与桥壳铸为一体, 既易于散热,又利于降低材料成本, 但这对铸造技术、铸造精度和加工精度都提出了极高的要求。(5)电子智能控制技术进入驱动桥产品 电子智能控制技术已经在汽车业得到了快速发展,如,现代汽车上使用的ABS(制动防抱死控制)、ASR(驱动力控制系统)等系统。1.3 设计主要内容1、驱动桥结构形式及布置方案的确定。2、驱动桥零部件尺寸参数确定及校核:(1)完成主减速器的基本参数选择与设计计算;(2)完成差速器的设计与计算;(3)完成半轴的设计与计算;(4)完成驱动桥桥壳的受力分析及强度计算。3、完成驱动桥驱动桥装配图和主要部分零件。第2章 驱动桥的总体方案确定2.1 驱动桥的种类、结构、设计要求及主要参数2.1.1 汽车车桥的种类汽车的驱动桥与从动桥统称为车桥,车桥通过悬架与车架(或承载式车身)相连,它的两端安装车轮,其功用是传递车架(或承载式车身)于车轮之间各方向的作用力及其力矩。根据悬架结构的不同,车桥分为整体式和断开式两种。当采用非独立悬架时,车桥中部是刚性的实心或空心梁,这种车桥即为整体式车桥;断开式车桥为活动关节式结构,与独立悬架配用。在绝大多数的载货汽车和少数轿车上,采用的是整体式非断开式。断开式驱动桥两侧车轮可独立相对于车厢上下摆动。根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型。其中,转向桥和支持桥都属于从动桥,一般货车多以前桥为转向桥,而后桥或中后两桥为驱动桥2。2.1.2 驱动桥的种类驱动桥位于传动系末端,其基本功用首先是增扭、降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并合理的分配给左、右驱动车轮,其次,驱动桥还要承受作用于路面和车架或车厢之间的垂直力、纵向力和横向力,以及制动力矩和反作用力矩。驱动桥分为断开式和非断开式两种。驱动桥的结构型式与驱动车轮的悬挂型式密切相关。当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上,都是采用非断开式驱动桥,其桥壳是一根支撑在左右驱动车轮上的刚性空心梁,主减速器、差速器和半轴等所有的传动件都装在其中;当驱动车轮采用独立悬挂时,则配以断开式驱动桥。2.1.3 驱动桥结构组成在多数汽车中,驱动桥包括主减速器、差速器、驱动车轮的传动装置(半轴)及桥壳等部件如图1.1所示。 1 2 3 4 5 6 7 8 9 101半轴2圆锥滚子轴承3支承螺栓4主减速器从动锥齿轮5油封 6主减速器主动锥齿轮7弹簧座8垫圈9轮毂10调整螺母图1.1 驱动桥2.1.4 驱动桥设计要求1、选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。2、外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。3、齿轮及其他传动件工作平稳,噪声小。4、在各种载荷和转速工况下有较高的传动效率。5、具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。6、与悬架导向机构运动协调。7、结构简单,加工工艺性好,制造容易,维修,调整方便。2.1.5设计车型主要参数设计车型主要参数表2.1参考数据表2.1参考数据序号项 目数 据单 位1车身长度5185mm2车身宽度1720mm3车身高度1710mm4车 重1720kg5轴 距3025mm6前轮距1435mm7后轮距1440mm8轮胎规格215/75 R15 9排 量2.0L10最大功率/转速68/4000kw/ rpm11最大转矩/转速200/2000N.m/ rpm12最高车速120km/h13离地间隙220mm2.2 主减速器结构方案的确定2.2.1主减速比的计算主减速比io对主减速器的结构形式、轮廓尺寸、质量大小影响很大。当变速器处于最高档位时io对汽车的动力性和燃料经济性都有直接影响。的选择应在汽车总体设计时和传动系统的总传动比一起由整车动力计算来确定。可利用在不同的下的功率平衡图来计算对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择io值,可是汽车获得最佳的动力性和燃料经济性。对于具有很大功率储备的轿车、长途公共汽车尤其是竞赛车来说,在给定发动机最大功率及其转速的情况下,所选择的io值应能保证这些汽车有尽可能高的最高车速。这时值应按下式来确定3:=0.377 (2.1)式中:车轮的滚动半径,=0.332m 变速器最高档传动比0.8 最大功率转速4000 r/min 最大车速120km/h对于与其他汽车来说,为了得到足够的功率而使最高车速稍有下降,一般选得比最小值大10%25%,即按下式选择:=(0.3770.472) (2.2)经计算初步确定= 6.17 按上式求得的io应与同类汽车的主减速比相比较,并考虑到主、从动主减速齿轮可能的齿数对io予以校正并最后确定。2.2.2主减速器的齿轮类型按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面齿轮式传动、圆柱齿轮式传动(又可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。 在现代货车车驱动桥中,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。螺旋锥齿轮如图2.1(a)所示主、从动齿轮轴线交于一点,交角都采用90度。螺旋锥齿轮的重合度大,啮合过程是由点到线,因此,螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。双曲面齿轮如图2.1(b)所示主、从动齿轮轴线不相交而呈空间交叉。和螺旋锥齿轮相比,双曲面齿轮的优点有:1、尺寸相同时,双曲面齿轮有更大的传动比。2、传动比一定时,如果主动齿轮尺寸相同,双曲面齿轮比螺旋锥齿轮有较大轴径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。(b) 双曲面齿轮(a) 螺旋锥齿轮图2.1 螺旋锥齿轮与双曲面齿轮3、当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮的直径较小,有较大的离地间隙。4、工作过程中,双曲面齿轮副既存在沿齿高方向的侧向滑动,又有沿齿长方向的纵向滑动,这可以改善齿轮的磨合过程,使其具有更高的运转平稳性。双曲面齿轮传动有如下缺点:1、长方向的纵向滑动使摩擦损失增加,降低了传动效率。2、齿面间有大的压力和摩擦功,使齿轮抗啮合能力降低。3、双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。4、双曲面齿轮必须采用可改善油膜强度和防刮伤添加剂的特种润滑油。螺旋锥齿轮传动的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时捏合,螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。本次设计采用螺旋锥齿轮。2.2.3主减速器的减速形式主减速器的减速形式分为单级减速、双级减速、单级贯通、双级贯通、主减速及轮边减速等。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关,但它主要取决于由动力性、经济性等整车性能所要求的主减速比io的大小及驱动桥下的离地间隙、驱动桥的数目及布置形式等。通常单极减速器用于主减速比io7.6的各种中小型汽车上。 (a) 单级主减速器 (b) 双级主减速器图2.2主减速器如图2.2(a)所示,单级减速驱动车桥是驱动桥中结构最简单的一种,制造工艺较简单,成本较低,是驱动桥的基本型,在货车上占有重要地位。目前货车发动机向低速大扭矩发展的趋势使得驱动桥的传动比向小速比发展;随着公路状况的改善,特别是高速公路的迅猛发展,许多货车使用条件对汽车通过性的要求降低,因此,产品不必像过去一样,采用复杂的结构提高其的通过性;与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加。如图2.2(b)所示,与单级主减速器相比,由于双级主减速器由两级齿轮减速组成,使其结构复杂、质量加大;主减速器的齿轮及轴承数量的增多和材料消耗及加工的工时增加,制造成本也显著增加,只有在主减速比io较大(7.6io16时,取=0。=549.643.2.2 主减速器齿轮参数的选择1、 主、从动齿数的选择 选择主、从动锥齿轮齿数时应考虑如下因素:为了磨合均匀,之间应避免有公约数;为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于40;为了啮合平稳,噪声小和具有高的疲劳强度对于商用车一般不小于6;主传动比较大时,尽量取得小一些,以便得到满意的离地间隙。对于不同的主传动比,和应有适宜的搭配。主减速器的传动比为6.17,初定主动齿轮齿数z1=7,从动齿轮齿数z2=40。2、从动锥齿轮节圆直径及端面模数的选择 根据从动锥齿轮的计算转矩(见式3.1和式3.2并取两式计算结果中较小的一个作为计算依据,按经验公式选出: (3.5) 式中:直径系数,取=1316;计算转矩,取,较小的。取=4897.35 计算得,=220.77271.71mm,初取=240mm。 选定后,可按式算出从动齿轮大端模数,并用下式校核 (3.6) 式中:模数系数,取=0.30.4;计算转矩,取。 =5.096.79由GB/T12368-1990,取=6mm,满足校核。所以有:=42mm =240mm。3、螺旋锥齿轮齿面宽的选择 通常推荐圆锥齿轮从动齿轮的齿宽F为其节锥距的0.3倍。对于汽车工业,主减速器螺旋锥齿轮面宽度推荐采用:F=0.155=37.2mm,可初取F=40mm。一般习惯使锥齿轮的小齿轮齿面宽比大齿轮稍大,使其在大齿轮齿面两端都超出一些,通常小齿轮的齿面加大10%较为合适,在此取=44。4、螺旋锥齿轮螺旋方向 主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受的轴向力的方向。当变速器挂前进挡时,应使主动锥齿轮的轴向力离开锥顶方向。这样可使主、从动齿轮有分离的趋势,防止轮齿因卡死而损坏。所以主动锥齿轮选择为左旋,从锥顶看为逆时针运动,这样从动锥齿轮为右旋,从锥顶看为顺时针,驱动汽车前进。5、 旋角的选择 螺旋角是在节锥表面的展开图上定义的,齿面宽中点处为该齿轮的名义螺旋角。螺旋角应足够大以使1.25。因越大传动就越干稳,噪声就越低。在一般机械制造用的标准制中,螺旋角推荐用35。6、法向压力角a的选择 压力角可以提高齿轮的强度,减少齿轮不产生根切的最小齿数,但对于尺寸小的齿轮,大压力角易使齿顶变尖及刀尖宽度过小,并使齿轮的端面重叠系数下降,一般对于“格里森”制主减速器螺旋锥齿轮来说,载货汽车可选用20压力角6。7、主从动锥齿轮几何计算计算结果如表3.1主减速器齿轮的几何尺寸计算用表。 表3.1 主减速器齿轮的几何尺寸计算用表序号项 目计 算 公 式计 算 结 果1主动齿轮齿数72从动齿轮齿数403模数64齿面宽=44mm=40mm5工作齿高9.36mm6全齿高=10.398mm7法向压力角=208轴交角=909节圆直径=42mm=240mm10节锥角arctan=90-=14.125=75.87411节锥距A=A=121.827mm12周节t=3.1416 t=18.8496mm13齿顶高=7.74mm=1.62mm14齿根高=2.658mm=8.778mm15径向间隙c=c=1.399mm16齿根角=1.249=4.12117面锥角;=14.047=80.32218根锥角=8.677=77.95219外圆直径=57.248mm=240.559mm20节锥顶点止齿轮外缘距离=118.67mm=19.40mm21理论弧齿厚=17.09mm=4.90mm22齿侧间隙B=0.1780.2280.2mm23螺旋角=353.2.3螺旋锥齿轮的强度计算1、损坏形式及寿命在完成主减速器齿轮的几何计算之后,应对其强度进行计算,以保证其有足够的强度和寿命以及安全可靠性地工作。在进行强度计算之前应首先了解齿轮的破坏形式及其影响因素。齿轮的损坏形式常见的有轮齿折断、齿面点蚀及剥落、齿面胶合、齿面磨损等。它们的主要特点及影响因素分述如下:(1)轮齿折断 主要分为疲劳折断及由于弯曲强度不足而引起的过载折断。折断多数从齿根开始,因为齿根处齿轮的弯曲应力最大。 疲劳折断:在长时间较大的交变载荷作用下,齿轮根部经受交变的弯曲应力。如果最高应力点的应力超过材料的耐久极限,则首先在齿根处产生初始的裂纹。随着载荷循环次数的增加,裂纹不断扩大,最后导致轮齿部分地或整个地断掉。在开始出现裂纹处和突然断掉前存在裂纹处,在载荷作用下由于裂纹断面间的相互摩擦,形成了一个光亮的端面区域,这是疲劳折断的特征,其余断面由于是突然形成的故为粗糙的新断面。 过载折断:由于设计不当或齿轮的材料及热处理不符合要求,或由于偶然性的峰值载荷的冲击,使载荷超过了齿轮弯曲强度所允许的范围,而引起轮齿的一次性突然折断。 为了防止轮齿折断,应使其具有足够的弯曲强度,并选择适当的模数、压力角、齿高及切向修正量、良好的齿轮材料及保证热处理质量等。齿根圆角尽可能加大,根部及齿面要光洁。(2)齿面的点蚀及剥落 齿面的疲劳点蚀及剥落是齿轮的主要破坏形式之一,约占损坏报废齿轮的70%以上。它主要由于表面接触强度不足而引起的。点蚀:是轮齿表面多次高压接触而引起的表面疲劳的结果。由于接触区产生很大的表面接触应力,常常在节点附近,特别在小齿轮节圆以下的齿根区域内开始,形成极小的齿面裂纹进而发展成浅凹坑,形成这种凹坑或麻点的现象就称为点蚀。一般首先产生在几个齿上。在齿轮继续工作时,则扩大凹坑的尺寸及数目,甚至会逐渐使齿面成块剥落,引起噪音和较大的动载荷。在最后阶段轮齿迅速损坏或折断。减小齿面压力和提高润滑效果是提高抗点蚀的有效方法,为此可增大节圆直径及增大螺旋角,使齿面的曲率半径增大,减小其接触应力。在允许的范围内适当加大齿面宽也是一种办法。齿面剥落:发生在渗碳等表面淬硬的齿面上,形成沿齿面宽方向分布的较点蚀更深的凹坑。凹坑壁从齿表面陡直地陷下。造成齿面剥落的主要原因是表面层强度不够。例如渗碳齿轮表面层太薄、心部硬度不够等都会引起齿面剥落。当渗碳齿轮热处理不当使渗碳层中含碳浓度的梯度太陡时,则一部分渗碳层齿面形成的硬皮也将从齿轮心部剥落下来。(3)齿面胶合 在高压和高速滑摩引起的局部高温的共同作用下,或润滑冷却不良、油膜破坏形成金属齿表面的直接摩擦时,因高温、高压而将金属粘结在一起后又撕下来所造成的表面损坏现象和擦伤现象称为胶合。它多出现在齿顶附近,在与节锥齿线的垂直方向产生撕裂或擦伤痕迹。轮齿的胶合强度是按齿面接触点的临界温度而定,减小胶合现象的方法是改善润滑条件等。(4)齿面磨损 这是轮齿齿面间相互滑动、研磨或划痕所造成的损坏现象。规定范围内的正常磨损是允许的。研磨磨损是由于齿轮传动中的剥落颗粒、装配中带入的杂物,如未清除的型砂、氧化皮等以及油中不洁物所造成的不正常磨损,应予避免。汽车主减速器及差速器齿轮在新车跑合期及长期使用中按规定里程更换规定的润滑油并进行清洗是防止不正常磨损的有效方法。汽车驱动桥的齿轮,承受的是交变负荷,其主要损坏形式是疲劳。其表现是齿根疲劳折断和由表面点蚀引起的剥落。在要求使用寿命为20万千米或以上时,其循环次数均以超过材料的耐久疲劳次数。因此,驱动桥齿轮的许用弯曲应力不超过210.9Nmm.表3.2给出了汽车驱动桥齿轮的许用应力数值。 表3.2汽车驱动桥齿轮的许用应力 ( Nmm)计算载荷 主减速器齿轮的许用弯曲应力主减速器齿轮的许用接触应力差速器齿轮的许用弯曲应力,中的较小者7002800980210.91750210.9实践表明,主减速器齿轮的疲劳寿命主要与最大持续载荷(即平均计算转矩)有关,而与汽车预期寿命期间出现的峰值载荷关系不大。汽车驱动桥的最大输出转矩和最大附着转矩并不是使用中的持续载荷,强度计算时只能用它来验算最大应力,不能作为疲劳损坏的依据7。2、主减速器螺旋锥齿轮的强度计算(1)单位齿长上的圆周力 在汽车主减速器齿轮的表面耐磨性,常常用其在轮齿上的假定单位压力即单位齿长圆周力来估算,即 (3.7)式中:单位齿长上的圆周力,N/mm; P作用在齿轮上的圆周力,N,按发动机最大转矩和最大附着力矩两种载荷工况进行计算。按发动机最大转矩计算时: (3.8)式中:发动机输出的最大转矩,在此取200; 变速器的传动比; 主动齿轮节圆直径,在此取42mm.;按上式计算一档时: Nmm按最大附着力矩计算时: (3.9)式中:汽车满载时一个驱动桥给水平地面的最大负荷,对于后驱动桥还应考虑汽车最大加速时的负荷增加量,在此取16660N; 轮胎与地面的附着系数,在此取0.85; 轮胎的滚动半径,在此取0.332m;按上式=979.469 Nmm。在现代汽车的设计中,由于材质及加工工艺等制造质量的提高,单位齿长上的圆周力有时提高许用资料的20%25%。经验算以上两数据都在许用范围内,校核成功。(2)轮齿的弯曲强度计算 汽车主减速器螺旋锥齿轮轮齿的计算弯曲应力为 (3.10)式中:齿轮计算转矩,对从动齿轮,取,较小的者即=4897.35和=549.64来计算;对主动齿轮应分别除以传动效率和传动比得=892.86,=100.195;超载系数,1.0; 尺寸系数=0.6970; 载荷分配系数取=1; 质量系数,对于汽车驱动桥齿轮,档齿轮接触良好、节及径向跳动精度高时,取1;J计算弯曲应力用的综合系数,见图3.1,=0.238,=0.178。相啮合齿轮的齿数求综合系数J的齿轮齿数图3.1 弯曲计算用综合系数J按计算: 主动锥齿轮弯曲应力700 Nmm从动锥齿轮弯曲应力700 Nmm按计算:主动锥齿轮弯曲应力210.9 Nmm从动锥齿轮弯曲应力210.9Nmm综上所述由表3.2,计算的齿轮满足弯曲强度的要求。(3)轮齿的接触强度计算 螺旋锥齿轮齿面的计算接触应力(Nmm)为: (3.11)式中:主动齿轮计算转矩分别为=892.86,=100.195;材料的弹性系数,对于钢制齿轮副取232.6;主动齿轮节圆直径,42mm;,同3.10;尺寸系数,=1; 表面质量系数,对于制造精确的齿轮可取1; F齿面宽,取齿轮副中较小值即从动齿轮齿宽40mm; J 计算应力的综合系数,J =0.13,见图3.2所示。小齿轮齿数接触强度计算用J大齿轮齿数图3.2 接触强度计算综合系数J按计算,2800 Nmm 按计算,1750 Nmm由表3.2轮齿齿面接触强度满足校核。(4)主动齿轮轴的弯矩 如图3.3所示为主动齿轮受力及弯矩图。图3.3 主动齿轮轴弯矩图 危险截面上的合成弯曲应力为 : (3.12)式中: 弯曲截面系数,主动齿轮计算转矩;危险截面弯矩,主动齿轮径向力经计算,=66.7MPa=230MPa所以主动齿轮轴满足要求。3.2.4主减速器的轴承计算轴承的计算主要是计算轴承的寿命。设计时,通常是先根据主减速器的结构尺寸初步确定轴承的型号,然后验算轴承寿命。影响轴承寿命的主要外因是它的工作载荷及工作条件,因此在验算轴承寿命之前,应先求出作用在齿轮上的轴向力、径向力、圆周力,然后再求出轴承反力,以确定轴承载荷。1、作用在主减速器主动齿轮上的力如图3.4所示锥齿轮在工作过程中,相互啮合的齿面上作用有一法向力。该法向力可分解为沿齿轮切向方向的圆周力、沿齿轮轴线方向的轴向力及垂直于齿轮轴线的径向力。图3.4 主动锥齿轮工作时受力情况为计算作用在齿轮的圆周力,首先需要确定计算转矩。汽车在行驶过程中,由于变速器挡位的改变,且发动机也不全处于最大转矩状态,故主减速器齿轮的工作转矩处于经常变化中。实践表明,轴承的主要损坏形式为疲劳损伤,所以应按输入的当量转矩进行计算。作用在主减速器主动锥齿轮上的当量转矩可按下式计算8:(3.13)式中:发动机最大转矩,在此取201Nm;,变速器在各挡的使用率,可参考表3.4选取0.5,2,5,15,77.5;,变速器各挡的传动比6.01,3.82,2.44,1.55,1;,变速器在各挡时的发动机的利用率,可参考表3.4选取50,60,70,70,60。表3.4及的参考值变速器档位车型轿车公共汽车载货汽车III挡IV挡IV挡IV挡带超速档IV挡IV挡带超速档V挡80I IIIIIIVV19901420750.82.51680.72627651415501311850.53.57590.5251577.5IIIIIIIVV60 60507065606065605050707060607070606050607060506070705060707060注:表中,其中发动机最大转矩,;汽车总重,。经计算=193.732 Nm齿面宽中点的圆周力P为:=9459.57N (3.14)式中:T作用在该齿轮上的转矩。主动齿轮的当量转矩; 该齿轮齿面宽中点的分度圆直径。对于螺旋锥齿轮 所以:40.96mm =251.64mm; 从动齿轮的节锥角80.073。计算螺旋锥齿轮的轴向力与径向力根据条件选用表3.5中公式。表3.5 圆锥齿轮轴向力与径向力主动齿轮轴向力径向力螺旋方向旋转方向右左顺时针反时针右左反时针顺时针主动齿轮的螺旋方向为左;旋转方向为顺时针:=7204.88 N (3.15)= 3091.05 N (3.16)从动齿轮的螺旋方向为右:旋转方向为逆时针: =3091.05(N) (3.17) =7204.88(N) (3.18)式中:齿廓表面的法向压力角20; 主动齿轮的节锥角9.26;从动齿轮的节锥角80.073。2、主减速器轴承载荷的计算轴承的轴向载荷就是上述的齿轮的轴向力。但如果采用圆锥滚子轴承作支承时,还应考虑径向力所应起的派生轴向力的影响。而轴承的径向载荷则是上述齿轮的径向力,圆周力及轴向力这三者所引起的轴承径向支承反力的向量和。当主减速器的齿轮尺寸,支承形式和轴承位置已初步确定,计算出齿轮的轴向力、径向力圆周力后,则可计算出轴承的径向载荷。对于采用悬臂式的主动锥齿轮和跨置式的从动锥齿轮的轴承径向载荷,如图3.5所示图3.5 主减速器轴承的布置尺寸轴承A,B的径向载荷分别为= (3.19) (3.20)式中:已知=9459.57N,=3091.05N,=7204.88N , 40.96mm, a=43mm,b=26mm,c=69mm。所以,轴承A的径向力=5929.29 N 轴承B的径向力=12255.52 N轴承的寿命为 s (3.21)式中: 为温度系数,在此取1.0;为载荷系数,在此取1.2;Cr额定动载荷,N:其值根据轴承型号确定。此外对于无轮边减速器的驱动桥来说,主减速器的从动锥齿轮轴承的计算转速为 r/min (3.22)式中:轮胎的滚动半径,0.332m; 汽车的平均行驶速度,km/h;对于载货汽车和公共汽车可取3035 km/h,在此取32.5 km/h。所以有上式可得=260.39 r/min主动锥齿轮的计算转速=260.396.17=1606.62 r/min。所以轴承能工作的额定轴承寿命: h (3.23)式中: 轴承的计算转速,1310.50r/min。若大修里程S定为100000公里,可计算出预期寿命即 = h (3.24) 所以=3076.9 h对于轴承A和B,在此并不是单独一个轴承,而是一对轴承,根据尺寸,在此选用30207型轴承,d=35mm,D=72mm,Cr=54.2KN,e=0.37对于轴承A,在此径向力=5929.29N,轴向力A=7204.88N,所以=1.21eX=0.4,Y=1.6当量动载荷 Q= (3.25)式中:冲击载荷系数在此取1.2;所以,Q=1.2(0.45929.29+1.67204.88)=16679.4N。由于采用的是成对轴承=2Cr,所以轴承的使用寿命为:=6514.5 h3076.9 h=所以轴承A符合使用要求。对于轴承B,径向力=12255.53N,轴向力A=7204.88,所以=0.47eX=0.4,Y=1.6当量动载荷 Q= (3.26)式中:冲击载荷系数在此取1.2;所以,Q=1.2(0.412255.53+1.67204.88)=19715.7N=3731.02 h3076.9 h=所以轴承B符合使用要求9。 对于从动齿轮的轴承C,D的径向力R= (3.27) (3.28)已知:P=9459.57N,=3091.05N,=7204.88N,a=240mm,b=124mm.c=116mm所以,轴承C的径向力:=4887.4N;轴承D的径向力:=9939.38N根据尺寸,轴承C,D均采用32103,其额定动载荷Cr为82.8KN,D=100mm,d=65mmT=23mm,e=0.35对于轴承C,轴向力A=3091.05N,径向力=4887.4N,并且=0.63e, X=0.4,Y=1.7所以Q=1.2(0.43091.051.79939.38)=2176.03N =6716.17所以轴承C满足使用要求。对于轴承D,轴向力A=0N,径向力R=23100.5N,X=1,Y=0。所以Q=9939.38N=91507.36 h 所以轴承D满足使用要求10。3.3 主减速器齿轮材料及热处理驱动桥锥齿轮的工作条件是相当恶劣的,与传动系的其它齿轮相比,具有载荷大,作用时间长,载荷变化多,带冲击等特点。其损坏形式主要有齿轮根部弯曲折断、齿面疲劳点蚀(剥落)、磨损和擦伤等。根据这些情况,对于驱动桥齿轮的材料及热处理应有以下要求:1、具有较高的疲劳弯曲强度和表面接触疲劳强度,以及较好的齿面耐磨性,故齿表面应有高的硬度;2、轮齿心部应有适当的韧性以适应冲击载荷,避免在冲击载荷下轮齿根部折断;3、钢材的锻造、切削与热处理等加工性能良好,热处理变形小或变形规律易于控制,以提高产品的质量、缩短制造时间、减少生产成本并将低废品率;4、选择齿轮材料的合金元素时要适合我国的情况。汽车主减速器用的螺旋锥齿轮以及差速器用的直齿锥齿轮,目前都是用渗碳合金钢制造。在此,齿轮所采用的钢为20CrMnTi用渗碳合金钢制造的齿轮,经过渗碳、淬火、回火后,轮齿表面硬度应达到5864HRC,而心部硬度较低,当端面模数8时为2945HRC。对于渗碳深度有如下的规定:当端面模数m5时, 为0.91.3mm 当端面模数m58时,为1.01.4mm由于新齿轮接触和润滑不良,为了防止在运行初期产生胶合、咬死或擦伤,防止早期的磨损,圆锥齿轮的传动副(或仅仅大齿轮)在热处理及经加工(如磨齿或配对研磨)后均予与厚度0.0050.010mm的磷化处理或镀铜、镀锡。这种表面不应用于补偿零件的公差尺寸,也不能代替润滑。对齿面进行喷丸处理有可能提高寿命达25。对于滑动速度高的齿轮,为了提高其耐磨性,可以进行渗硫处理。渗硫处理时温度低,故不引起齿轮变形。渗硫后摩擦系数可以显著降低,故即使润滑条件较差,也会防止齿轮咬死、胶合和擦伤等现象产生。3.4 主减速器的润滑 主加速器及差速器的齿轮、轴承以及其他摩擦表面均需润滑,其中尤其应注意主减速器主动锥齿轮的前轴承的润滑,因为其润滑不能靠润滑油的飞溅来实现。为此,通常是在从动齿轮的前端靠近主动齿轮处的主减速壳的内壁上设一专门的集油槽,将飞溅到壳体内壁上的部分润滑油收集起来再经过近油孔引至前轴承圆锥滚子的小端处,由于圆锥滚子在旋转时的泵油作用,使润滑油由圆锥滚子的下端通向大端,并经前轴承前端的回油孔流回驱动桥壳中间的油盆中,使润滑油得到循环。这样不但可使轴承得到良好的润滑、散热和清洗,而且可以保护前端的油封不被损坏。为了保证有足够的润滑油流进差速器,有的采用专门的倒油匙。 为了防止因温度升高而使主减速器壳和桥壳内部压力增高所引起的漏油,应在主减速器壳上或桥壳上装置通气塞,后者应避开油溅所及之处。加油孔应设置在加油方便之处,油孔位置也决定了油面位置。放油孔应设在桥壳最低处,但也应考虑到汽车在通过障碍时放油塞不易被撞掉。3.5 本章小结本章根据所给参数确定了主减速器计算载荷、并根据有关的机械设计、机械制造的标准对齿轮参数进行合理的选择,最后对螺旋锥齿轮的相关几何尺寸参数进行列表整理,并且对主动、从动齿轮进行强度校核。对主减速器齿轮的材料及热处理,主减速器的润滑给以说明。第4章 差速器设计4.1 概述汽车在行使过程中,左右车轮在同一时间内所滚过的路程往往是不相等的,左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行使或直线行使,均会引起车轮在路面上的滑移或滑转,一方面会加剧轮胎磨损,另一方面会使转向沉重,通过性和操纵稳定性变坏。为此,在驱动桥的左右车轮间都装有轮间差速器。差速器是个差速传动机构,用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。差速器可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。4.2 对称式圆锥行星齿轮差速器原理对称式锥齿轮差速器是一种行星齿轮机构。如图4.1所示,差速器壳3与行星齿轮轴5连成一体,形成行星架。因为它又与主减速器从动齿轮6固连在一起,固为主动件,设其角速度为;半轴齿轮1和2为从动件,其角速度为和。A、B两点分别为行星齿轮4与半轴齿轮1和2的啮合点。行星齿轮的中心点为C,A、B、C三点到差速器旋转轴线的距离均为。图4.1 差速器差速原理当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同一半径上的A、B、C三点的圆周速度都相等(图3-1),其值为。于是=,即差速器不起作用,而半轴角速度等于差速器壳3的角速度。当行星齿轮4除公转外,还绕本身的轴5以角速度自转时(图),啮合点A的圆周速度为=+,啮合点B的圆周速度为=-。于是+=(+)+(-)即 + =2 (4.1) 若角速度以每分钟转数表示,则 (4.2)式(4.2)为两半轴齿轮直径相等的对称式圆锥齿轮差速器的运动特征方程式,它表明左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,而与行星齿轮转速无关。因此在汽车转弯行驶或其它行驶情况下,都可以借行星齿轮以相应转速自转,使两侧驱动车轮以不同转速在地面上滚动而无滑动。由式(4.2)还可以得知:当任何一侧半轴齿轮的转速为零时,另一侧半轴齿轮的转速为差速器壳转速的两倍;当差速器壳的转速为零,(例如中央制动器制动传动轴时)若一侧半轴齿轮受其它外来力矩而转动,则有另一侧半轴齿轮即以相同的转速反向转动。4.3 对称式圆锥行星齿轮差速器的结构汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。它可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器。本设计即使用普通锥齿轮差速器。普通的对称式圆锥齿轮差速器由差速器左右壳,两个半轴齿轮,四个行星齿轮,行星齿轮轴,半轴齿轮垫片及行星齿轮垫片等组成(如图4.2所示)。由于其具有结构简单、工作平稳、制造方便、用于公路汽车上也很可靠等优点,故广泛用于各类公路车辆上。1-轴承;2-左外壳;3-垫片;4-半轴齿轮;5-垫圈;6-行星齿轮; 7-从动齿轮;8-右外壳;9-十字轴;10-螺栓图4.2 普通的对称式圆锥行星齿轮差速器4.4 对称式圆锥行星齿轮差速器的设计4.4.1 差速器齿轮的基本参数选择1、行星齿轮数目的选择 载货汽车多用4个行星齿轮。2、行星齿轮球面半径(mm)的确定 圆锥行星齿轮差速器的尺寸通常决定于行星齿轮背面的球面半径,它就是行星齿轮的安装尺寸,实际上代表了差速器圆锥齿轮的节锥距,在一定程度上表征了差速器的强度。 球面半径可根据经验公式来确定: (mm) (4.3)式中:行星齿轮球面半径系数,2.522.99; ,取,较小的者即=4897.35。经计算=42.7950.77mm,取=45mm差速器行星齿轮球面半径确定后,即根据下式预选其节锥距: =(0.980.99)=44.144.5mm 取44mm (4.4)3、行星齿轮与半轴齿轮齿数的选择 为了得到较大的模数从而使齿轮有较高的强度,应使行星齿轮的齿数尽量少,但一般不应少于10。半轴齿轮的齿数采用1425。半轴齿轮与行星齿轮的齿数比多在1.52范围内。 在任何圆锥行星齿轮式差速器中,左、右两半轴齿轮的齿数之和,必须能被行星齿轮的数目n所整除,否则将不能安装,即应满足: = I (4.5)式中: ,左,右半轴齿数,=; n行星齿轮数,n=4; I任意整数。取行星齿轮齿数=10,半轴齿轮齿数=18,满足条件。4、差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定 首先初步求出行星齿轮和半轴齿轮的节锥角: (4.6)式中:行星齿轮和半轴齿轮齿数。 再根据下式初步求出圆锥齿轮的大端模数: =4.76 (4.7)由机械设计手册:GB/T12368-1990,取标准模数=5mm; 确定模数后,节圆直径d即可由下式求得: (4.8)5、压力角 目前汽车差速器齿轮大都选用的压力角,齿高系数为0.8,最少齿数可减至10,并且再小齿轮(行星齿轮)齿顶不变尖的情况下还可由切相修正加大半轴齿轮齿厚,从而使行星齿轮与半轴齿轮趋于等强度。6、行星齿轮安装孔直径及其深度L的确定 行星齿轮安装孔与行星齿轮名义直径相同,而行星齿轮安装孔的深度L就是行星齿轮在其轴上的支承长度,如图4.3所示。 图4.3安装孔直径及其深度L =22(mm) =20 mm (4.9)式中:差速器传递的转矩4897.35; n行星齿轮数4; 行星齿轮支承面中点到锥顶的距离,mm. ,是半轴齿轮齿面宽中点处的直径,l=36mm; 支承面的许用挤压应力,取为69MPa.。4.4.2 差速器齿轮的几何尺寸计算表4.1为汽车差速器用直齿锥齿轮的几何尺寸,表中计算用的弧齿厚系数如图图4.4,取=-0.0485。切向修正系数图4-4 汽车差速器直齿锥齿轮切向修正系数(弧齿系数) 表4.1 汽车差速器直齿锥齿轮的几何尺寸计算表(长度单位mm)序号项目计算公式计算结果1行星齿轮齿数10,应尽量取最小值=102半轴齿轮齿数=1425,且需满足式(4.5)=183模数 =5mm4齿面宽F=(0.250.30)A;b10m12mm5工作齿高=8mm6全齿高8.9517压力角 22.58 轴交角 909 节圆直径; 10节锥角,=29.0511节锥距=54mm12周节=3.1416=15.708mm13齿顶高;=5.27mm=2.72mm14齿根高=1.788-;=1.788-=3.67mm;=6.22mm15径向间隙=-=0.188+0.051=0.991mm16齿根角=;=4.77; =8.0517面锥角;=37.1=65.7218根锥角;=24.28=52.919外圆直径;mmmm20节圆顶点至齿轮外缘距离mmmm21理论弧齿厚 = 8.69 mm= 7.018 mm22齿侧间隙=0.1270.178 mm=0.015mm4.4.3 差速器齿轮的强度计算差速器齿轮的尺寸受结构限制,而且承受的载荷较大,它不像主减速器齿轮那样经常处于啮合状态,只有当汽车转弯或左右轮行驶不同的路程时,或一侧车轮打滑而滑转时,差速器齿轮才能有啮合传动的相对运动,所以差速器齿轮主要进行弯曲强度计算,而对于疲劳寿命则不予考虑11。 汽车差速器齿轮的弯曲应力为 (4.10)式中:T差速器一个行星齿轮给予一个半轴齿轮的转矩,; (4.11) = 734.6025; =82.446;n差速器行星齿轮数目4;半轴齿轮齿数18;超载系数1.0;质量系数1.0;尺寸系数=0.6661;载荷分配系数1.1;F齿面宽12mm;m模数5mm;相啮合另一齿轮齿数J计算汽车差速器齿轮弯曲应力的总和系数0.225,见图4.5。求综合系数的齿轮齿数图4.5 弯曲计算用综合系数J 以计算得:=536.97 MPa=980 MPa以计算得:=60.27MPa=210.9Mpa所以由表3.2差速器齿轮强度满足要求。4.4.4 差速器齿轮的材料差速器齿轮和主减速器齿轮一样,基本上都是用渗碳合金钢制造,目前用于制造差速器锥齿轮的材料为20CrMnTi、20CrMoTi、22CrMnMo和20CrMo等,本设计采用20CrMnTi,由于差速器齿轮轮齿要求的精度较低,所以精锻差速器齿轮工艺已被广泛应用12。4.5 本章小结本章首先介绍了差速器结构作用及工作原理,对普通对称式圆锥行星齿轮差速器的基本参数进行了设计计算,根据机械设计、机械制造的标准值对差速器齿轮的几何尺寸列表整理,并且对强度进行了校核,最终确定了所设计差速器的各个参数,并满足了强度校核。第5章 半轴及驱动桥桥壳的设计5.1 概述驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器的半轴齿轮传给驱动车轮。在一般的非断开式驱动桥上,驱动车轮的传动装置就是半轴,半轴将差速器的半轴齿轮与车轮的轮毂联接起来,半轴的形式主要取决半轴的支承形式:普通非断开式驱动桥的半轴,根据其外端支承的形式或受力状况不同可分为半浮式,3/4浮式和全浮式,在此由于是载重汽车,采用全浮式结构。设计半轴的主要尺寸是其直径,在设计时首先可根据对使用条件和载荷工况相同或相近的同类汽车同形式半轴的分析比较,大致选定从整个驱动桥的布局来看比较合适的半轴半径,然后对它进行强度校核。驱动桥壳的主要功用是支承汽车质量,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮,承受车轮传来的路面反力和反力矩,并经悬架传给车身,因此桥完既是承载件又是传力件它同时又是主减速器,差速器和半轴的装配体。驱动桥壳应满足如下设计要求:1、应具有足够的强度和刚度,以保证主减速器齿轮啮合正常,并不使半轴产生附加弯曲应力;2、在保证强度和刚度的情况下,尽量减小质量以提高行驶的平顺性;3、保证足够的离地间隙;4、结构工艺性好,成本低;5、保护装于其中的传动系统部件和防止泥水浸入;6、拆装,调整,维修方便。5.2 半轴的设计与计算5.2.1全浮式半轴的计算载荷的确定计算时首先应合理地确定作用在半轴上的载荷,应考虑到以下三种可能的载荷工况:(1)纵向力(驱动力或制动力)最大时,其最大值为,附着系数在计算时取0.8,没有侧向力作用;(2)侧向力最大时,其最大值为(发生于汽车侧滑时),侧滑时轮胎与地面的侧向附着系数在计算时取1.0,没有纵向力作用;(3)垂向力最大时(发生在汽车以可能的高速通过不平路面时),其值为,其中为车轮对地面的垂直载荷,为动载荷系数,这时不考虑纵向力和侧向力的作用。 由于车轮承受的纵向力,侧向力值的大小受车轮与地面最大附着力的限制,即有 故纵向力最大时不会有侧向力作用,而侧向力最大时也不会有纵向力作用。全浮式半轴只承受转矩,只计算在上述第一种工况下转矩,如图5.1为全浮半轴支撑示意图。其计算可按求得,其中,的计算,可根据最大附着力和发动机最大转矩计算,并取两者中的较小者。若按最大附着力计算,即 (5.1)式中: 轮胎与地面的附着系数取0.8; 汽车加速或减速时的质量转移系数,可取1.21.4在此取1.3。根据上式=8663.2 N 若按发动机最大转矩计算,即 (5.2)式中: 差速器的转矩分配系数,对于普通圆锥行星齿轮差速器取0.6; 发动机最大转矩,200Nm; 汽车传动效率,计算时可取0.9; 传动系最低挡传动比=6.175.83=35.9711; 轮胎的滚动半径,0.332。根据上式11701.4 N取两者较小值8663.2N 所以最大转矩计算则:2876.18Nm图5.1 全浮式半轴支承示意图5.2.2全浮半轴杆部直径的初选 设计时,全浮式半轴杆部直径的初步选择可按下式进行: 取d=30mm (5.3)式中:d半轴杆部直径mm; T半轴的计算转矩,2876.18; 半轴转矩许用应力,MPa。因半轴材料取40MnB,为926.1MPa左右,考虑安全系数在1.31.6之间,可取=692MPa;5.2.3全浮半轴强度计算半轴的扭转应力可由下式计算:= (5.4)式中:半轴扭转应力,MPa; T半轴的计算转矩2876.18; d半轴杆部直径30mm; 半轴的扭转许用应力,取=490588MPa。=542.8,强度满足要求。半轴的最大扭转角为 (5.5)式中:T半轴承受的最大转矩,2876.18; 半轴长度540mm; G材料的剪切弹性模量8.410N/mm; J半轴横截面的极惯性矩,=79481.25mm。经计算最大扭转角=13.3,扭转角宜选为615满足条件。5.2.4全浮式半轴花键强度计算为了使半轴的花键内径不小于其杆部直径,常常将加工花键的端部做得粗些,并适当地减小花键槽的深度,因此花键齿数必须相应地增加,通常取10齿(轿车半轴)至18齿(载货汽车半轴)。半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过渡部分的圆角半径以减小应力集中,本次设计时考虑到此处花键部分与杆部之间的倒角为13mm。重型车半轴的杆部较粗,外端突缘也很大,当无较大锻造设备时可采用两端均为花键联接的结构,且取相同花键参数以简化工艺。在现代汽车半轴上,渐开线花键用得较广,但也有采用矩形或梯形花键的。本次设计采用带有凸缘的全浮式半轴,采用渐开线花键。半轴花键的剪切应力为: MPa (5.6)半轴花键的挤压应力为: MPa (5.7)式中:半轴承受的最大转矩2876.18;半轴花键外径,22mm;相配的花键孔内径,20mm;花键齿数15;花键的工作长度55mm;花键齿宽,mm,=4.71mm;载荷分布的不均匀系数,计算时取为0.75。根据据上式计算:=98.69 MPa=464.84 MPa所以校核成功。5.2.5半轴材料与热处理为了使半轴和花键内径不小于其干部直径,常常将加工花键的端部都做得粗些,并使当地减小花键槽的深度,因此花键齿数必须相应地增加。半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过渡部分的圆角半径以减小应力集中。为了使半轴杆部和突缘间的过渡圆角都有较大的半径而不致引起其他零件的干涉,常常将半轴凸缘用平锻机锻造13。本设计半轴采用40,半轴的热处理采用高频、中频感应淬火。这种处理方法使半轴表面淬硬达,硬化层深约为其半径的1/3,心部硬度可定为;不淬火区(凸缘等)的硬度可定在范围内。由于硬化层本身的强度较高,加之在半轴表面形成大的残余压应力,以及采用喷丸处理、滚压半轴突缘根部过渡圆角等工艺,使半轴的静强度和疲劳强度大为提高,尤其是疲劳强度提高十分显著14。5.3桥壳的受力分析及强度计算本次设计采用钢板冲压焊接整体式桥壳,选定桥壳的结构形式以后,应对其进行受力分析,选择其断面尺寸,进行强度计算。汽车驱动桥的桥壳是汽车上的主要承载构件之一,其形状复杂,而汽车的行驶条件如道路状况、气候条件及车辆的运动状态又是千变万化的,因此要精确地计算出汽车行驶时作用于桥壳各处的应力大小是相当困难的。在通常的情况下,在设计桥壳时多采用常规设计方法,这时将桥壳看成简支梁并校核某些特定断面的最大应力值。我国通常推荐:计算时将桥壳复杂的受力状况简化成三种典型的计算工况,即当车轮承受最大的铅锤力(当汽车满载并行驶与不平路面,受冲击载荷)时;当车轮承受最大切应力(当汽车满载并以最大牵引力行驶和紧急制动)时;以及当车轮承受最大侧向力(当汽车满载侧滑)时。只要在这三种载荷计算工况下桥壳的强度特征得到保证,就认为该桥壳在汽车各种行驶条件下是可靠的。在进行上述三种载荷工况下桥壳的受力分析之前,还应先分析一下汽车满载静止于水平路面时桥壳最简单的受力情况,即进行桥壳的静弯曲应力计算15。5.3.1桥壳的静弯曲应力计算桥壳犹如一空心横梁,两端经轮毂轴承支承于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左、右轮胎的中心线,地面给轮胎的反力(双轮胎时则沿双胎中心),桥壳则承受此力与车轮重力之差值,即(),计算简图如5.2所示。 图5.2 桥壳静弯曲应力计算简图桥壳按静载荷计算时,在其两钢板弹簧座之间的弯矩为 Nm (5.8)式中:汽车满载时静止于水平路面时驱动桥给地面的载荷,在此16660N; 车轮(包括轮毂、制动器等)重力,N; 驱动车轮轮距,为1.440m; 驱动桥壳上两钢板弹簧座中心间的距离,为0.86m.。桥壳的危险断面通常在钢板弹簧座附近。通常由于远小于,且设计时不易准确预计,当无数据时可以忽略不计所以: =2415.7Nm而静弯曲应力则为 MPa (5.9)式中:2415.7 Nm; 危险断面处(钢板弹簧座附近)桥壳的垂向弯曲截面系数,具体如下:关于桥壳在钢板弹簧座附近的危险断面的形状,主要由桥壳的结构形式和制造工艺来确定,钢板冲压焊接整体式桥壳在弹簧座附近多为圆管端面,截面图如表5.2所示,其中D=100mm,d=88mm.。表5.3 钢板弹簧座附近桥壳的截面形状及截面系数垂向及水平弯曲截面系数: =39279.9 mm (5.10)扭转截面系数: =78559.8 mm (5.11)所以,=158.55MPa 。 5.3.2在不平路面冲击载荷作用下桥壳的强度计算当汽车高速行驶于不平路面上时,桥壳除承受在静载状态下的那部分载荷外,还承受附加的冲击载荷。这时桥壳载动载荷下的弯曲应力为:MPa (5.12) 式中:动载荷系数,对载货汽车取2.5; 桥壳载静载荷下的弯曲应力,158.55MPa。 所以,=396.38 MPa。5.3.3汽车以最大牵引力行驶时的桥壳的强度计算 计算时不考虑侧向力。作用在左右驱动车轮上除有垂向反力外,尚有切向反力。作用在左右驱动车轮的最大切向反力共为 (5.13)式中:发动机的最大转矩200; 传动系一档传动比5.83; 主减速比6.17; 传动系的传动效率0.9; 轮胎的滚动半径0.332m。经计算,=19502.4N。图5.4 汽车以最大牵引行驶时桥壳的受力简图如图5.4所示,后驱动桥壳在两钢板弹簧座之间的垂向弯曲矩为: =2657.27 (5.14)式中:汽车加速行驶时的质量转移系数对于货车取1.1;,同5.8式。由于驱动车轮的最大切向反力使桥壳也承受水平方向的弯矩,对于装用普通圆锥齿轮差速器的驱动桥,在两弹簧之间桥壳所受的水平方向的弯矩为: =580 (5.15) 桥壳还承受因驱动桥传递驱动转矩而引起的反作用力矩。这时在两板簧座间桥壳承受的转矩为: (5.16)由于桥壳在钢板弹簧座附近的危险断面处为圆管断面,所以在该断面处的合成弯矩为: =4228.27 (5.17)该危险断面处的合成应力为: =107.4 (5.18)式中:危险断面处的弯曲截面系数39279.9。5.3.4汽车紧急制动时的桥壳强度计算这时不考虑侧向力,图5.5为汽车在紧急制动时的受力简图。图5.5 汽车紧急制动时桥壳的受力分析简图如图5.5所示,紧急制动时桥壳在两钢板弹簧座之间的垂向弯矩及水平方向弯矩分别为 (5.19)= (5.20)式中:同式(5.8)说明; 汽车制动时的质量转移系数,对于载货汽车的后桥,取0.8; 驱动车轮与路面的附着系数0.8。经计算,=4982.3,=3985.8。桥壳在两钢板弹簧的外侧部分同时还承受制动力所引起的转矩 =3539.92 (5.21)所以, (5.22) (5.23)5.3.5 汽车受最大侧向力时桥壳的强度计算 当汽车满载、高速急转弯时,则会产生一想当大的且作用于汽车质心处离心力。汽车也会由于其他原因而承受侧向力。当汽车所承受的侧向力达到地面给轮胎的侧向反作用力的最大值即侧向附着力时,则汽车处于侧滑的临界状态,此时没有纵向力作用。侧向力一旦超过侧向附着力,汽车则侧滑如图6.6所示。因此汽车驱动桥的侧滑条件是: (5.24)式中:驱动桥所受的侧向力; 地面给左、右驱动车轮的侧向反作用力; 汽车满载静止于水平面时驱动桥给地面的载荷40180N; 轮胎与地面的侧向附着系数取1。由于汽车产生纯粹的侧滑,因此计算时可以认为地面给轮胎的切向反作用力为零。 汽车向右侧滑时,驱动桥侧滑时左、右驱动车轮的支承反力为: (5.25) (5.26)式中:左、右驱动车轮的支承反力,N; 汽车满载时的质心高度,0.65m; 同式(5.24)下的说明; 驱动车轮的轮距1.440m。 对于半轴为为全浮式的驱动桥,在桥壳两端的半轴套管上,各装着一对轮毂轴承,它们布置在车轮垂向反作用力的作用线的两侧,通常比外轴承离车轮中心线更近。侧滑时内、外轮毂轴承对轮毂的径向支承力,如图6.6所示,可根据一个车轮的受力平衡求出。汽车向右侧滑时左、右车轮轮毂内外轴承的径向支承力分别为: (5.27) (5.28) (5.29) (5.30)式中:轮胎的滚动半径332mm; 取a+b=130mm a=b=65mm。其中地面给左右驱动车轮的侧向反作用力Y2L、Y2R可由下式求得: (5.31) (5.32)轮毂内、外轴承支承中心之间的距离愈大,则由侧滑引起的轴承径向力愈小。另外,足够大,也会增加车轮的支承刚度。否则,如果将两轴承的距离缩至使两轴承相碰,则车轮的支承刚度会变差而接近于3/4浮式半轴的情况。当然,的数值过大也会引起轮毂的宽度及质量的加大而造成布置上的困难。在载货汽车的设计中,常取/4。轮毂轴承承受力最大的情况是发生在汽车侧滑时,所以轮轴(即半轴套管)也是在汽车满载侧滑时承受最大的弯矩及应力。半轴套管的危险断面位于轮毂内轴承的里端处,该处弯矩为: (5.33)式中:为轮毂内轴承支承中心至该轴承内端支承面间的距离。 弯曲应力 (5.34) 剪切应力 (5.35) 合成应力 (5.36)半轴套管处的应力均不超过。经过计算以各种情况下校核均满足桥壳的许用弯曲应力为300500Mpa,许用扭转应力为150400,所以驱动桥壳校核成功。对于钢板冲压焊接整体式桥壳,多采用或中碳钢板(化学成分控制为的碳和不大于的硫)。本次设计桥壳材料选取为。半轴套管材料为40Cr。上述桥壳强度的传统计算方法,只能算出桥壳某一断面的应力平均值,而不能完全反映桥壳上应力及其分布的真实情况。它仅用于对桥壳强度的验算或用作与其他车型的桥壳强度进行比较。而不能用于计算桥壳上某点(例如应力集中点)的真实应力值。使用有限元法对汽车驱动桥壳进行强度分析,只要计算模型简化得合理,受力与约束条件处理得恰当,就可以得到比较理想的计算结果。可以得到比较详细的应力与变形的分布情况,特别是能指出应力集中区域和应力变化趋势,这些都是上述传统计算方法所难以办到的16。5.4 本章小结 首先本章对半轴的功用进行了说明,并且在纵向力最大时确定了半轴的计算载荷。对半轴进行了具体的设计计算,确定了半轴的各部分尺寸,并进行了校核。最后对材料和热处理做了加以说明。本章还选择了钢板冲压焊接式整体驱动桥桥壳,并进行了桥壳的受力分析和强度计算。在静弯曲应力下,不同路面冲击载荷作用下和汽车以最大牵引力行驶时及汽车紧急制动时和汽车受最大侧向力时的五种情况下桥壳受力和强度进行了校核,并满足设计要求。结 论本次设计的轻型货车(1060)驱动桥是根据传统驱动桥设计方法,并结合现代设计方法,并参考相关车型进行设计,设计的主要内容和结论如下:(1)考察了相近载重量的货车的驱动桥结构形式和发展过程及以往形式的优缺点,确定了驱动桥的总体设计方案;(2)完成主减速器的设计,确定主减速比为6.17,采用单级主减速器可提高机械效率,具有很好的动力性和经济性,确定了主减速器主从动齿轮的相关参数;(3)完成差速器的设计,采用普通行星齿轮差速器,确定了差速器的各部件的尺寸参数;(4)完成半轴的设计,采用全浮式半轴,确定了半轴的参数;(5)完成驱动桥壳的结构设计,采用钢板冲压焊接整体式桥壳;(6)各部件都进行强度校核,并选用合理的材料对主要零部件的热处理方法进行了说明,满足了设计要求;(7)运用AutoCAD软件绘制出驱动桥装配图和主要零部件的工程图。本次设计的驱动桥结构符合设计要求及实际应用,设计时驱动桥总成及零部件的选择能尽量满足零件的标准化、部件的通用化和产品的系列化的要求,修理、保养方便,工艺性好,制造容易。由于结构简单、主减速器造价低廉、工作可靠,能大大降低整车生产的总成本推动汽车经济的发展,可以被广泛用在各种轻型载货汽车。参考文献1 王聪兴,冯茂林.现代设计方法在驱动桥设计中的应用J公路与汽运, 2004(8).2 陈家瑞. 汽车构造M. 北京:机械工业出版社,2003.3 余志生. 汽车理论M. 北京:机械工业出版社, 2008.4 尹国臣.浅析汽车驱动桥主减速器的装配与调整J.科学教育家,2007,(10).5 陈珂,殷国富,汪永超.汽车后桥差速器齿轮结构设计优化研究J. 机械传动,2008(4).6 刘惟信.汽车车桥设计M.北京:清华大学出版社,2004.7 安晓娟,郝春光.主减速器齿轮的失效分析J.拖拉机与农用运输车,2007(8).8 汽车工程手册编辑委员会.汽车工程手册M:设计篇.北京:人民交通出版社,2001.9 机械设计手册编委会.齿轮传动(单行本)M. 北京:机械工业出版社,2007.10 成大先机械设计手册(1-3卷)M.北京:化学工业出版社,2002.11 肖文颖,王书翰.差速器行星齿轮的力学分析J.科技资讯,2007,(11).12 彭彦宏,吕晓霞,陆有. 差速器圆锥齿轮的失效分析J. 金属热处理,2006,(4).13 付建红.载重汽车后桥半轴的技术改进J. 新余高专学报,2006,(2).14 周小平.避免驱动桥半轴扭断的工艺改进J. 新余高专学报,2005,(10).15 刘惟信.汽车设计M.北京:清华大学出版社,2001.16 杨朝会,王丰元,马浩.基于有限元法驱动桥壳分析J. 农业装备与车辆工程,2006,(10).17 li-Ping,Jeong Kim,Beom-Soo Kang. Analysis and design of hydroforming proess for automobile rear axle housing by FEMJ. Internation Journal of Machine Tools & Manufacture,2000, (4).18 WANG Liang-mo,WANG He-fu,CHEN Jin-rong,LING Zhi-liang,CAO Yu-hua.Development of a Test Machine for IVECO Drive AxleJ. International Journal of Plant Engineering and Management,2007, (1).致 谢为期三个月的毕业设计生活结束了,在本文即将完成之际,首先感谢我的指导老师朱荣福老师,从选题到设计的展开到设计的完成,一直得到朱老师的支持和鼓励,他敏锐的思维、严谨的治学态度使我受益非浅。通过这次毕业设计,使我将三年半来学到的知识进行了一次大总结,一次大检查,并且对汽车设计有了全新且比较全面的认识,达到了前所未有的高度,并锻炼了独立思考解决问题的能力。再次向朱老师表示衷心的感谢!感谢我的家人多年来对我无微不至的关怀、始终如一的支持,感谢他们对我的鼓励和生活上的诸多照顾,感谢他们督促我接受良好的教育。最后,向参加论文审阅、答辩的专家和老师表示感谢。附 录A 英文文献Drive AxleAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.Powerflow The drive axle must transmit power through a 90 angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.Rear-wheel driveRear-wheel-drive vehicles are mostly trucks, very large sedans and many sports car and coupe models. The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with a driveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in the same vertical plane, and not the drive axle shaft, respectively, in their own sub-actuator with a direct connection, but the actuator is located at the front or the back of the adjacent shaft of the two bridges is arranged in series. Vehicle before and after the two ends of the driving force of the drive axle, is the sub-actuator and the transmission through the middle of the bridge. The advantage is not only a reduction of the number of drive shaft, and raise the driving axle of the common parts of each other, and to simplify the structure, reduces the volume and quality.Fig 2 Rear-wheel-drive axleSome vehicles do not follow this typical example. Such as the older Porsche or Volkswagen vehicles which were rear engine, rear drive. These vehicles use a rear mounted transaxle with halfshafts connected to the drive wheels. Also, some vehicles were produced with a front engine, rear transaxle setup with a driveshaft connecting the engine to the transaxle, and halfshafts linking the transaxle to the drive wheels.Differential operationIn order to remove the wheel around in the kinematics due to the lack of co-ordination about the wheel diameter arising from a different or the same rolling radius of wheel travel required, inter-wheel motor vehicles are equipped with about differential, the latter to ensure that the car driver Bridge on both sides of the wheel when in range with a trip to the characteristics of rotating at different speeds to meet the requirements of the vehicle kinematics.Fig 3 Principle of differentialThe accompanying illustration has been provided to help understand how this occurs. 1.The drive pinion, which is turned by the driveshaft, turns the ring gear.2.The ring gear, which is attached to the differential case, turns the case.3.The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case.4.The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft .5.Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit.6.The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns.7.When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears.8.When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds .Open-wheel differential on each general use the same amount of torque. To determine the size of the wheel torque to bear two factors: equipment and friction. In dry conditions, when a lot of friction, the wheel bearing torque by engine size and gear restrictions are hours in the friction (such as driving on ice), is restricted to a maximum torque, so that vehicles will not spin round. So even if the car can produce more torque, but also need to have sufficient traction to transfer torque to the ground. If you increase the throttle after the wheels slip, it will only make the wheels spin faster.Fig 4 Conventional differentialLimited-slip and locking differential operation Fig 5 Limited-slip differentialDifferential settlement of a car in the uneven road surface and steering wheel-driven speed at about the different requirements; but is followed by the existence of differential in the side car wheel skid can not be effective when the power transmission, that is, the wheel slip can not produce the driving force, rather than spin the wheel and does not have enough torque. Good non-slip differential settlement of the car wheels s
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:JX1021TS3轻型货车驱动桥设计【6张CAD图纸和说明书全套终稿】
链接地址:https://www.renrendoc.com/p-50731630.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!