




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第16讲二次函数 内容索引 基础诊断梳理自测 理解记忆 考点突破分类讲练 以例求法 易错防范辨析错因 提升考能 基础诊断 返回 知识梳理 1 1 二次函数一般地 形如函数y ax2 bx c 其中a b c是常数 且a 0 的函数叫做x的二次函数 二次函数的解析式通常有以下三种 1 一般式 y ax2 bx c 其中a b c是常数 且a 0 这是最常用的形式 当已知二次函数图象上三个点的坐标或很容易求出抛物线上三个点时设一般式 利用已知条件 列方程组求解 2 交点式 y a x x1 x x2 其中a 0 x1 x2是一元二次方程ax2 bx c 0的两个实数根 当已知二次函数图象与x轴交点坐标为 x1 0 x2 0 或者一元二次方程ax2 bx c 0的两个实数根是x1 x2时及另一条件 用交点式比较快捷 计算方便 y a x x1 x x2 也称两根式 3 顶点式 y a x h 2 k 其中a h k是常数 且a 0 当已知二次函数图象的顶点坐标为 h k 和另外一点时 设顶点式 然后将另一点的坐标代入 求出a后 回代所设函数关系式 并把它化为一般式 这三种解析式各有优点 解题时应根据已知条件合理选择 才能使计算过程简洁明了 向上 减小 增大 向下 增大 减小 3 二次函数图象的平移 抛物线的顶点常见的四种变动方式 1 开口反向 或旋转180 此时顶点坐标不变 只是a的符号相反 2 两抛物线关于x轴对称 此时顶点关于x轴对称 a的符号相反 3 两抛物线关于y轴对称 此时顶点关于y轴对称 a的符号不变 4 两抛物线关于原点对称 此时顶点关于原点对称 a的符号相反 诊断自测 2 1 2 3 4 5 1 2016 成都 二次函数y 2x2 3的图象是一条抛物线 下列关于该抛物线的说法 正确的是 A 抛物线开口向下B 抛物线经过点 2 3 C 抛物线的对称轴是直线x 1D 抛物线与x轴有两个交点 D 解析A a 2 则抛物线y 2x2 3的开口向上 故选项错误 B 当x 2时 y 2 4 3 5 则抛物线不经过点 2 3 故选项错误 C 抛物线的对称轴为直线x 0 故选项错误 D 当y 0时 2x2 3 0 此方程有两个不相等的实数解 故选项正确 2 2015 荆州 将抛物线y x2 2x 3向上平移2个单位长度 再向右平移3个单位长度后 得到的抛物线的解析式为 A y x 1 2 4B y x 4 2 4C y x 2 2 6D y x 4 2 6 B 解析将y x2 2x 3化为顶点式 得y x 1 2 2 将抛物线y x2 2x 3向上平移2个单位长度 再向右平移3个单位长度后 得到的抛物线解析式为y x 4 2 4 1 2 3 4 5 3 2016 常德 二次函数y ax2 bx c a 0 的图象如图所示 下列结论 b 0 c 0 a c b b2 4ac 0 其中正确的个数是 A 1B 2C 3D 4 解析 二次函数的开口向下 与y轴的交点在y轴的正半轴 a 0 c 0 故 正确 0 1 b 0 故 错误 当x 1时 y a b c 0 a c b 故 正确 二次函数与x轴有两个交点 b2 4ac 0 故 正确 C 1 2 3 4 5 4 2016 宁波 已知函数y ax2 2ax 1 a是常数 a 0 下列结论正确的是 A 当a 1时 函数图象过点 1 1 B 当a 2时 函数图象与x轴没有交点C 若a 0 则当x 1时 y随x的增大而减小D 若a 0 则当x 1时 y随x的增大而增大 1 2 3 4 5 D 1 2 3 4 5 解析A 当a 1 x 1时 y 1 2 1 2 函数图象不经过点 1 1 故选项错误 B 当a 2时 42 4 2 1 8 0 函数图象与x轴有两个交点 故选项错误 5 2016 毕节 一次函数y ax b a 0 与二次函数y ax2 bx c a 0 在同一平面直角坐标系中的图象可能是 C 1 2 3 4 5 A B C D 1 2 3 4 5 解析A 由抛物线可知 a 0 由直线可知 a 0 故本选项错误 返回 考点突破 返回 例1 2016 南宁 如图 已知抛物线经过原点O 顶点为A 1 1 且与直线y x 2交于B C两点 1 求抛物线的解析式及点C的坐标 考点一 二次函数解析式 答案 解 顶点坐标为 1 1 设抛物线解析式为y a x 1 2 1 又 抛物线过原点 0 0 0 a 0 1 2 1 解得a 1 抛物线解析式为y x 1 2 1 即y x2 2x 2 求证 ABC是直角三角形 答案 规律方法 证明 如图 分别过A C两点作x轴的垂线 交x轴于点D E两点 则AD OD BD 1 CE BE OB OE 2 1 3 ABO CBO 45 即 ABC 90 ABC是直角三角形 本题为二次函数的综合应用 涉及知识点有待定系数法 图象的交点问题 直角三角形的判定 勾股定理 相似三角形的性质及分类讨论等 本题考查知识点较多 综合性较强 难度适中 规律方法 练习1 答案 2016 娄底 如图 抛物线y ax2 bx c a b c为常数 a 0 经过点A 1 0 B 5 6 C 6 0 1 求抛物线的解析式 解 抛物线过点A 1 0 C 6 0 设y a x 1 x 6 a 0 把B 5 6 代入 得a 5 1 5 6 6 解得a 1 y x 1 x 6 x2 5x 6 答案 2 如图 在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大 若存在 请求出点P的坐标 若不存在 请说明理由 解存在 理由如下 如答图 分别过点P B向x轴作垂线PM和BN 垂足分别为M N 设P m m2 5m 6 四边形PACB的面积为S 则PM m2 5m 6 AM m 1 MN 5 m CN 6 5 1 BN 6 答案 当m 2时 S有最大值为48 这时m2 5m 6 22 5 2 6 12 P 2 12 二次函数的图象与性质 考点二 例2 2016 天津 已知二次函数y x h 2 1 h为常数 在自变量x的值满足1 x 3的情况下 与其对应的函数值y的最小值为5 则h的值为 A 1或 5B 1或5C 1或 3D 1或3 B 答案 规律方法 分析 当x h时 y随x的增大而增大 当x h时 y随x的增大而减小 根据1 x 3时 函数的最小值为5可分两种情况讨论 若h 1 x 3 当x 1时 y取得最小值5 可得 1 h 2 1 5 解得 h 1或h 3 舍去 若1 x 3 h 当x 3时 y取得最小值5 可得 3 h 2 1 5 解得 h 5或h 1 舍去 综上可知 h的值为 1或5 规律方法 本题主要考查二次函数的性质和最值 根据二次函数的性质和最值分类讨论是解题的关键 规律方法 2016 兰州 点P1 1 y1 P2 3 y2 P3 5 y3 均在二次函数y x2 2x c的图象上 则y1 y2 y3的大小关系是 A y3 y2 y1B y3 y1 y2C y1 y2 y3D y1 y2 y3 练习2 答案 D 分析 y x2 2x c 对称轴为x 1 且开口向下 P2 3 y2 P3 5 y3 在对称轴右侧 y随x的增大而减小 3y3 根据二次函数图象的对称性可知 P1 1 y1 和P2 3 y2 关于对称轴对称 y1 y2 y3 考点三二次函数图象的几何变换 答案 例3 2015 杭州 设函数y x 1 k 1 x k 3 k是常数 1 当k取1和2时的函数y1和y2的图象如图所示 请你在同一直角坐标系中画出当k取0时函数的图象 解当k 0时 函数为y x 1 x 3 x 1 x 3 所画函数图象如下图所示 答案 2 根据图象 写出你发现的一条结论 解 图象与x轴的交点是 1 0 k取0和2时的函数图象关于点 0 2 中心对称 函数y x 1 k 1 x k 3 k是常数 的图象都经过 1 0 和 1 4 等等 答案 3 将函数y2的图象向左平移4个单位 再向下平移2个单位 得到函数y3的图象 求函数y3的最小值 解 y2 x 1 2 将函数y2的图象向左平移4个单位 再向下平移2个单位 得到函数为y3 x 3 2 2 当x 3时 函数y3的最小值为 2 规律方法 本题考查了二次函数图象与几何变换 由于抛物线平移后的形状不变 故a不变 所以求平移后的抛物线解析式通常可利用两种方法 一是求出原抛物线上任意两点平移后的坐标 利用待定系数法求出解析式 二是只考虑平移后的顶点坐标 即可求出解析式 规律方法 1 2016 舟山 把抛物线y x2先向右平移2个单位 再向上平移3个单位 平移后抛物线的表达式是 练习3 答案 分析 y x 2 2 3 分析抛物线y x2的顶点坐标为 0 0 点 0 0 向右平移2个单位 再向上平移3个单位所得对应点的坐标为 2 3 所以平移后抛物线的表达式为y x 2 2 3 2 2015 龙岩 抛物线y 2x2 4x 3绕坐标原点旋转180 所得的抛物线的解析式是 分析将y 2x2 4x 3化为顶点式 得y 2 x 1 2 1 抛物线y 2x2 4x 3绕坐标原点旋转180 所得的抛物线的解析式是y 2 x 1 2 1 化为一般式 得y 2x2 4x 3 y 2x2 4x 3 答案 分析 返回 易错防范 返回 易错警示系列16 根据自变量的范围确定二次函数值的范围 该函数图象的顶点坐标是 2 1 对称轴是直线x 2 2 当x 0时 y 3x2 4x 1 3 02 4 0 1 1 当x 4时 y 3 42
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年植物保护专业资格考试试题及答案
- 2025年声乐与音乐教育专业技能考核试卷及答案
- 2025年化学工程与工艺专业考试试卷及答案
- 2025年物业管理专业能力测试试卷及答案
- 2025年黄金投资分析师考试试卷及答案
- 2025年乡村医学考试试卷及答案
- 2025年健康管理师资格考试试题及答案发布
- 烧烤网红店品牌形象授权及区域代理合作协议
- 跨境法律文书快递保险及价值保全合同附件
- 跨区域物流企业叉车操作员派遣服务合同
- 广东省佛山市南海区2025年中考历史模拟试题(含答案)
- 2025年中国血型试剂行业竞争格局及市场发展潜力预测报告
- 中山大学自主招生个人陈述自荐信范文
- 塔吊培训资料课件
- T-ZAWS 004-2024 金属非金属露天矿山安全现状评价报告编制导则
- 面神经麻痹课件
- 2025专业技术人员继续教育考试题库(含答案)
- 【MOOC】中国税法:案例·原理·方法-暨南大学 中国大学慕课MOOC答案
- 2024水电站输水发电系统运行安全评价导则
- 砍伐树木的劳务合同范本
- 2024年食品安全知识考试题库
评论
0/150
提交评论