(浙江专用)2020高考数学二轮复习抢分攻略一考前必明的4大数学思想教案.docx_第1页
(浙江专用)2020高考数学二轮复习抢分攻略一考前必明的4大数学思想教案.docx_第2页
(浙江专用)2020高考数学二轮复习抢分攻略一考前必明的4大数学思想教案.docx_第3页
(浙江专用)2020高考数学二轮复习抢分攻略一考前必明的4大数学思想教案.docx_第4页
(浙江专用)2020高考数学二轮复习抢分攻略一考前必明的4大数学思想教案.docx_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

抢分攻略一考前必明的4大数学思想一函数与方程思想函数思想方程思想函数思想是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题得到解决的思想方程思想就是建立方程或方程组,或者构造方程,通过解方程或方程组或者运用方程的性质去分析、转化问题,使问题得到解决的思想函数与方程思想在一定的条件下是可以相互转化的,是相辅相成的,函数思想重在对问题进行动态的研究,方程思想则是在动中求静,研究运动中的等量关系应用一函数与方程思想在不等式中的应用典型例题 设不等式2x1m(x21)对满足|m|2的一切实数m都成立,则x的取值范围为_【解析】问题可以变成关于m的不等式(x21)m(2x1)0在m2,2上恒成立,设f(m)(x21)m(2x1),则即解得x,故x的取值范围为(,)【答案】(,)一般地,对于多变元问题,需要根据条件和要求解的结果,确定一个变量,创设新的函数,求解本题的关键是变换自变量,以参数m作为自变量构造函数式,不等式的问题就变成函数在闭区间上的值域问题 对点训练1设0a1,e为自然对数的底数,则a,ae,ea1的大小关系为()Aea1aaeBaeaea1Caeea1a Daea10,则f(x)ex10,所以f(x)在(0,)上是增函数,且f(0)0,f(x)0,所以ex1x,即ea1a.又yax(0aae,从而ea1aae.2关于x的不等式x1a22a0在x(2,)上恒成立,则a_解析:关于x的不等式x1a22a0在x(2,)上恒成立函数f(x)x在x(2,)上的值域为(a22a1,)因为函数f(x)x在(2,)上为增函数,所以f(x)24,即f(x)在(2,)上的值域为(4,),所以a22a14,解得a1或a3.答案:1或3应用二函数与方程思想在数列中的应用典型例题 已知数列an是各项均为正数的等差数列(1)若a12,且a2,a3,a41成等比数列,求数列an的通项公式an;(2)在(1)的条件下,数列an的前n项和为Sn,设bn,若对任意的nN*,不等式bnk恒成立,求实数k的最小值【解】(1)因为a12,aa2(a41),又因为an是正项等差数列,故d0,所以(22d)2(2d)(33d),得d2或d1(舍去),所以数列an的通项公式an2n.(2)因为Snn(n1),则.所以bn.令f(x)2x(x1),则f(x)20恒成立,所以f(x)在1,)上是增函数,所以当x1时,f(x)minf(1)3,即当n1时,(bn)max,要使对任意的正整数n,不等式bnk恒成立,则须使k(bn)max,所以实数k的最小值为. (1)本题完美体现函数与方程思想的应用,第(2)问利用裂项相消法求bn,构造函数,利用单调性求bn的最大值(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式与前n项和公式即为相应的解析式,因此解决数列最值(范围)问题的方法如下:由其表达式判断单调性,求出最值;由表达式不易判断单调性时,借助an1an的正负判断其单调性 对点训练1设等差数列an的前n项和为Sn,若S42,S50,S63,则nSn的最小值为_解析:由已知得,a5S5S42,a6S6S53,因为数列an为等差数列,所以公差da6a51.又S50,所以a12,故Sn2n,即nSn,令f(n)(n0且nZ),则f(n)n25n,令f(n)0,得n,令f(n)0,得0n0,a1a24,a3a26.(1)求数列an的通项公式;(2)若对任意的nN*,kan,Sn,1都成等差数列,求实数k的值解:(1)因为a1a24,a3a26,所以因为q0,所以q3,a11.所以an13n13n1,故数列an的通项公式为an3n1.(2)由(1)知an3n1,Sn,因为kan,Sn,1成等差数列,所以2Snkan1,即2k3n11,解得k3.应用三函数与方程思想在三角函数、平面向量中的应用典型例题 (1)若方程cos2xsin xa0在x上有解,则a的取值范围是_(2)已知a,b,c为平面上三个向量,又a,b是两个相互垂直的单位向量,向量c满足|c|3,ca2,cb1,x,y均为实数,则|cxayb|的最小值为_【解析】(1)法一:把方程cos2xsin xa0变形为acos2xsin x,设f(x)cos2xsin x,x,f(x)(1sin2x)sin x,由x可得sin x,易求得f(x)的值域为(1,1,故a的取值范围是(1,1法二:令tsin x,由x,可得t(0,1依题意得1t2ta0,即方程t2t1a0在t(0,1上有解,设f(t)t2t1a,其图象是开口向上的抛物线,对称轴为直线t,如图所示因此,f(t)0在(0,1上有解等价于即所以1b0)经过点,离心率为.(1)求椭圆E的方程;(2)设点A,F分别为椭圆的右顶点、右焦点,经过点F作直线交椭圆E于C,D两点,求四边形OCAD面积的最大值(O为坐标原点)【解】(1)由题设得解得所以椭圆E的方程为1.(2)设直线CD的方程为xky1,C(x1,y1),D(x2,y2),与椭圆方程1联立得(3k24)y26ky90.所以y1y2,y1y2.所以S四边形OCADSOCASODA2|y1|2|y2|y1y2|(其中t,t1)因为当t1时,y3t单调递增,所以3t4,所以S四边形OCAD3(当k0时取等号),即四边形OCAD面积的最大值为3.几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的求法来求解,这是求面积、线段长、最值(范围)问题的基本方法 对点训练设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线ykx(k0)与AB相交于点D,与椭圆相交于E,F两点若6,求k的值解:依题意得椭圆的方程为y21,直线AB,EF的方程分别为x2y2,ykx(k0)如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1x2,且x1,x2满足方程(14k2)x24,故x2x1.由6知x0x16(x2x0),得x0(6x2x1)x2.由D在AB上知x02kx02,得x0.所以,化简得24k225k60,解得k或k.二数形结合思想以形助数(数题形解)以数辅形(形题数解)借助形的生动性和直观性来阐述数之间的关系,把数转化为形,即以形作为手段,数作为目的的解决数学问题的数学思想借助于数的精确性、规范性及严密性来阐明形的某些属性,即以数作为手段,形作为目的的解决问题的数学思想数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合应用一数形结合思想在函数与方程中的应用典型例题 (1)记实数x1,x2,xn中最小数为minx1,x2,xn,则定义在区间0,)上的函数f(x)minx21,x3,13x的最大值为()A5 B6C8D10(2)设函数f(x)是定义在R上的偶函数,且对任意的xR,都有f(x2)f(2x),当x(2,0时,f(x)1,则关于x的方程f(x)log8(x2)0在区间(2,6)上根的个数为()A1 B2 C3 D4【解析】(1)在同一坐标系中作出三个函数yx21,yx3,y13x的图象如图:由图可知,在实数集R上,minx21,x3,13x为yx3上A点下方的射线,抛物线AB之间的部分,线段BC,与直线y13x上点C下方的部分的组合图显然,在区间0,)上,在C点时,yminx21,x3,13x取得最大值解方程组得点C(5,8)所以f(x)max8.(2)因为对任意的xR,都有f(x2)f(2x),所以f(x)的图象关于直线x2对称,又f(x)是定义在R上的偶函数,所以f(x2)f(2x)f(x2),f(x4)f(x2)2f(x2)2f(x),所以函数f(x)是周期为4的函数,则函数yf(x)的图象与ylog8(x2)的图象交点的个数即方程f(x)log8(x2)0根的个数,作出yf(x)与ylog8(x2)在区间(2,6)上的图象如图所示,易知两个函数在区间(2,6)上的图象有3个交点,所以方程f(x)log8(x2)0在区间(2,6)上有3个根,故选C.【答案】(1)C(2)C用图象法讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解(或函数零点)的个数是一种重要的方法,其基本思想是先把方程两边的代数式看作是两个熟悉的函数表达式(不熟悉时,需要作适当的变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解(或函数零点)的个数 对点训练1已知函数f(x)(aR),若函数f(x)在R上有两个零点,则实数a的取值范围是()A(0,1B1,)C(0,1) D(,1解析:选A.画出函数f(x)的大致图象如图所示因为函数f(x)在R有两个零点,所以f(x)在(,0和(0,)上各有一个零点当x0时,f(x)有一个零点,需00时,f(x)有一个零点,需a0.综上,0a1,故选A.2若关于x的方程kx2有四个不同的实数解,则k的取值范围为_解析:x0显然是方程的一个实数解;当x0时,方程kx2可化为(x4)|x|(x4且x0),设f(x)(x4)|x|(x4且x0),y,原题可以转化为两函数有三个非零交点f(x)(x4)|x|其大致图象如图所示,由图易得0.所以k的取值范围为.答案:应用二数形结合思想在求解不等式或参数范围中的应用典型例题 设函数f(x),则满足f(x1)f(2x)的x的取值范围是()A(,1 B(0,)C(1,0) D(,0)【解析】当x0时,函数f(x)2x是减函数,则f(x)f(0)1.作出f(x)的大致图象如图所示,结合图象可知,要使f(x1)f(2x),则需或所以x0,故选D.【答案】D求参数范围或解不等式问题经常用到函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化为数量关系来解决问题,往往可以避免烦琐的运算 对点训练若不等式|x2a|xa1对xR恒成立,则a的取值范围是_解析:作出y|x2a|和yxa1的简图如图所示,依题意知应有2a22a,故a.答案:(,应用三数形结合思想在解析几何中的应用典型例题 已知抛物线的方程为x28y,点F是其焦点,点A(2,4),在此抛物线上求一点P,使APF的周长最小,此时点P的坐标为_【解析】因为(2)20,b0)的左焦点为F,直线4x3y200过点F且与双曲线C在第二象限的交点为P,O为原点,|OP|OF|,则双曲线C的离心率为()A5B.C. D.解析:选A.根据直线4x3y200与x轴的交点F为(5,0),可知半焦距c5,设双曲线C的右焦点为F2,连接PF2,根据|OF2|OF|且|OP|OF|可得,PFF2为直角三角形如图,过点O作OA垂直于直线4x3y200,垂足为A,则易知OA为PFF2的中位线,又原点O到直线4x3y200的距离d4,所以|PF2|2d8,|PF|6,故结合双曲线的定义可知|PF2|PF|2a2,所以a1,故e5.故选A.2已知圆C:(x3)2(y4)21和两点A(m,0),B(m,0)(m0)若圆C上存在点P,使得APB90,则m的最大值为_解析:根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r1,且|AB|2m,因为APB90,连接OP,易知|OP|AB|m.求m的最大值,即求圆C上的点到原点O的最大距离因为|OC|5,所以|OP|max|OC|r6,即m的最大值为6.答案:6三分类讨论思想分类讨论的原则分类讨论的常见类型1.不重不漏2.标准要统一,层次要分明3.能不分类的要尽量避免,决不无原则的讨论1.由数学概念而引起的分类讨论2.由数学运算要求而引起的分类讨论3.由性质、定理、公式的限制而引起的分类讨论4.由图形的不确定性而引起的分类讨论5.由参数的变化而引起的分类讨论分类与整合的思想是将一个较复杂的数学问题分解成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的策略应用一由概念、法则、公式引起的分类讨论典型例题 设等比数列an的公比为q,前n项和Sn0(n1,2,3,),则q的取值范围是_【解析】由an是等比数列,Sn0,可得a1S10,q0,当q1时,Snna10.当q1时,Sn0,即0(n1,2,3,),则有或由得1q1.故q的取值范围是(1,0)(0,)【答案】(1,0)(0,)本题易忽略对q1的讨论,而直接由0,得q的范围,这种解答是不完备的本题根据等比数列前n项和公式的使用就要分q1,Snna1和q1,Sn进行讨论 对点训练1一条直线过点(5,2),且在x轴,y轴上的截距相等,则这条直线的方程为()Axy70B2x5y0Cxy70或2x5y0Dxy70或2y5x0解析:选C.设该直线在x轴,y轴上的截距均为a,当a0时,直线过原点,此时直线方程为yx,即2x5y0;当a0时,设直线方程为1,则求得a7,直线方程为xy70.2若函数f(x)ax(a0,a1)在1,2上的最大值为4,最小值为m,且函数g(x)(14m)在0,)上是增函数,则a_解析:若a1,则a24,a1m,故a2,m,此时g(x),为减函数,不合题意;若0a0,函数f(x)是(,)上的单调递增函数;当a0时,由f(x)0得xln a,若x(,ln a),则f(x)0;若x(ln a,),则f(x)0,所以函数f(x)在(,ln a)上单调递增,在(ln a,)上单调递减(2)f(x)e2xaex,设g(x)ex,则g(x).当x0,g(x)0,所以g(x)在(,0)上单调递增当x0时,1e2x0,g(x)0,所以g(x)在(0,)上单调递减所以g(x)maxg(0)1,所以a1.故a的取值范围是1,) (1)参数的变化取值导致不同的结果,需对参数进行讨论,如含参数的方程、不等式、函数等解析几何中直线点斜式、斜截式方程要考虑斜率k存在或不存在,涉及直线与圆锥曲线位置关系要进行讨论(2)分类讨论要标准明确、统一,层次分明,分类要做到“不重不漏” 对点训练1设f(x)若f(a)f(a1),则f()()A2B4C6 D8解析:选C.当0a1,f(a),f(a1)2(a11)2a,因为f(a)f(a1),所以2a,解得a或a0(舍去)所以f()f(4)2(41)6.当a1时,a12,所以f(a)2(a1),f(a1)2(a11)2a,所以2(a1)2a,无解综上,f()6.2设函数f(x)ax2(3a1)x3a2ex.(1)若曲线yf(x)在点(2,f(2)处的切线斜率为0,求a;(2)若f(x)在x1处取得极小值,求a的取值范围解:(1)因为f(x)ax2(3a1)x3a2ex,所以f(x)ax2(a1)x1ex.f(2)(2a1)e2.由题设知f(2)0,即(2a1)e20,解得a.(2)由(1)得f(x)ax2(a1)x1ex(ax1)(x1)ex.若a1,则当x时,f(x)0.所以f(x)在x1处取得极小值若a1,则当x(0,1)时,ax1x10.所以1不是f(x)的极小值点综上可知,a的取值范围是(1,)应用三由图形位置或形状引起的分类讨论典型例题 (1)已知变量x,y满足的不等式组表示的是一个直角三角形围成的平面区域,则实数k()A B.C0 D或0(2)设圆锥曲线C的两个焦点分别为F1,F2,若曲线C上存在点P满足|PF1|F1F2|PF2|432,则曲线C的离心率等于_【解析】(1)不等式组表示的可行域如图(阴影部分)所示由图可知,若要使不等式组表示的平面区域是直角三角形,只有当直线kxy10与y轴或y2x垂直时才满足结合图形可知斜率k的值为0或.(2)不妨设|PF1|4t,|F1F2|3t,|PF2|2t,其中t0.若该曲线为椭圆,则有|PF1|PF2|6t2a,|F1F2|3t2c,e;若该曲线为双曲线,则有|PF1|PF2|2t2a,|F1F2|3t2c,e.【答案】(1)D(2)或 (1)圆锥曲线形状不确定时,常按椭圆、双曲线来分类讨论,求圆锥曲线的方程时,常按焦点的位置不同来分类讨论(2)相关计算中,涉及图形问题时,也常按图形的位置不同、大小差异等来分类讨论 对点训练1过双曲线x21的右焦点F作直线l交双曲线于A,B两点,若|AB|4,则这样的直线l有()A1条 B2条C3条 D4条解析:选C.因为双曲线的两个顶点之间的距离是2,小于4,所以当直线l与双曲线左、右两支各有一个交点时,过双曲线的右焦点一定有两条直线满足条件;当直线l与实轴垂直时,有31,解得y2或y2,此时直线AB的长度是4,即只与双曲线右支有两个交点的所截弦长为4的直线仅有一条综上,可知有3条直线满足|AB|4.2设F1,F2为椭圆1的两个焦点,点P为椭圆上一点已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|PF2|,则的值为_解析:(1)若PF2F190,则|PF1|2|PF2|2|F1F2|2,又因为|PF1|PF2|6,|F1F2|2,解得|PF1|,|PF2|,所以.(2)若F1PF290,则|F1F2|2|PF1|2|PF2|2,所以|PF1|2(6|PF1|)220,所以|PF1|4,|PF2|2,所以2.综上知,的值为或2.答案:或2四转化与化归思想转化与化归的原则常见的转化与化归的方法1.熟悉化原则2.简单化原则3.直观化原则4.正难则反原则1.直接转化法2.换元法3.数形结合法4.构造法5.坐标法6.类比法7.特殊化方法8.等价问题法9.加强命题法10.补集法转化与化归思想就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学思想方法应用一一般与特殊的相互转化典型例题 (1)过抛物线yax2(a0)的焦点F,作一直线交抛物线于P,Q两点若线段PF与FQ的长度分别为p,q,则等于()A2a B.C4a D.(2)已知向量a,b满足|a|1,|b|2,则|ab|ab|的最小值是_,最大值是_【解析】(1)抛物线yax2(a0)的标准方程为x2y(a0),焦点F.过焦点F作直线垂直于y轴,则|PF|QF|,所以4a.(2)由题意,不妨设b(2,0),a(cos ,sin ),则ab(2cos ,sin ),ab(cos 2,sin ),令y|ab|ab|,则y210216,20由此可得(|ab|ab|)max2,(|ab|ab|)min4,即|ab|ab|的最小值是4,最大值是2.【答案】(1)C(2)42 (1)一般问题特殊化,使问题处理变得直接、简单特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果(2)对于某些选择题、填空题,如果结论唯一或题目提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案 对点训练已知函数f(x)(a3)xax3在1,1上的最小值为3,则实数a的取值范围是()A(,1B12,)C1,12 D.解析:选D.当a0时,函数f(x)3x,x1,1,显然满足条件,故排除A、B;(注意,对于特殊值的选取,越简单越好,0,1往往是首选)当a时,函数f(x)x3x,f(x)x2(x21),当1x1时,f(x)0,所以f(x)在1,1上单调递减,所以f(x)minf(1)3,满足条件,故排除C.综上,选D.应用二正与反的相互转化典型例题 若对于任意t1,2,函数g(x)x3x22x在区间(t,3)上总不为单调函数,则实数m的取值范围是_【解析】由题意得g(x)3x2(m4)x2,若g(x)在区间(t,3)上总为单调函数,则g(x)0在(t,3)上恒成立,或g(x)0在(t,3)上恒成立由得3x2(m4)x20,即m43x在x(t,3)上恒成立,所以m43t恒成立,则m41,即m5;由得m43x在x(t,3)上恒成立,则m49,即m.所以函数g(x)在区间(t,3)上总不为单调函数的m的取值范围为m0,则实数p的取值范围是_解析:如果在1,1内没有值满足f(x)0,则p3或p,故实数满足条件的p的取值范围为.答案:应用三常量与变量的相互转化典型例题 已知函数f(x)x33ax1,g(x)f(x)ax5,其中f(x)是f(x)的导函数对任意a1,1,都有g(x)0,则实数x的取值范围为_【解析】由题意,知g(x)3x2ax3a5,令(a)(3x)a3x25,1a1.由题意得即解得x4xp3成立的x的取值范围是_解析:设f(p)(x1)px24x3,则当x1时,f(p)0.所以x1.f(p)在0p4时恒为正等价于即解得x3或x0恒成立,则即解得log2x3,即0x8,故x的取值范围是(8,)答案:(8,)应用四形、体位置关系的相互转化典型例题 在平行六面体ABCDA1B1C1D1中,AA1AB,AB1B1C1.求证:(1)AB平面A1B1C;(2)平面ABB1A1平面A1BC.【证明】(1)在平行六面体ABCDA1B1C1D1中,ABA1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形又因为AA1AB,所以四边形ABB1A1为菱形,所以AB1A1B.因为AB1B1C1,BCB1C1,所以AB1BC.又因为A1BBCB,A1B平面A1BC,BC平面A1BC,所以AB1平面A1BC,又因为AB1平面ABB1A1,所以平面ABB1A1平面A1BC.形体位置关系的转化是针对几何问题采用的一种特殊转化方法主要适用于涉及平行、垂直的证明,如线面平行、垂直的推理与证明就是充分利用线面位置关系中的判定定理、性质定理实现位置关系的转化 对点训练1如图,在棱长为5的正方体ABCDA1B1C1D1中,EF是棱AB上的一条线段,且EF2,点Q是A1D1的中点,点P是棱C1D1上的动点,则四面体PQEF的体积()A是变量且有最大值B是变量且有最小值C是变量且有最大值和最小值D是常数解析:选D.点Q到棱AB的距离为常数,所以EFQ的面积为定值由C1D1EF,可得棱C1D1平面EFQ,所以点P到平面EFQ的距离是常数,于是可得四面体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论