




已阅读5页,还剩51页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知能整合提升 一 分类加法计数原理和分步乘法计数原理1 分类加法计数原理和分步乘法计数原理是排列问题和组合问题的基础 两个原理的主要区别在于 分类加法计数原理是 分类 而分步乘法计数原理是 分步 完成一件事 2 分类加法计数原理的特点是 类与类相互独立 每类方法均可独立完成这件事 可类比 并联 电路来理解 分步乘法计数原理的特点是 步与步相互依存 且只有当所有步骤均完成了 每个步骤缺一不可 这件事才算完成 可类比 串联 电路来理解 运用时要掌握其计数本质 合理恰当地运用这两个原理 热点考点例析 基本原理提供了 完成某件事情 是 分类 进行 还是 分步 进行 在分类或分步中 针对具体问题考虑是与 顺序 有关 还是无关 来确定排列与组合 基本原理的应用技巧 有一项活动 需在3名老师 8名男生和5名女生中选人参加 1 若只需一人参加 有多少种不同选法 2 若需老师 男生 女生各一人参加 有多少种不同办法 3 若需一名老师 一名学生参加 有多少种不同选法 规范解答 1 有三类选人的办法 3名老师中选一人 有3种方法 8名男生中选一人 有8种方法 5名女生中选一人 有5种方法 由分类加法计数原理 共有3 8 5 16种选法 2 分三步选人 第一步选老师 有3种选法 第二步选男生 有8种办法 第三步选女生 有5种选法 由分步乘法计数原理 共有3 8 5 120种选法 3 可分两类 每一类又分两步 第一类 选一名老师再选一名男生 有3 8 24种选法 第二类 选一名老师再选一名女生 有3 5 15种选法 再由分类加法计数原理 有24 15 39种选法 1 某校高中部 高一有6个班 高二有7个班 高三有8个班 学校利用星期六组织学生到某厂进行社会实践活动 1 任选1个班的学生参加社会实践 有多少种不同的选法 2 三个年级各选1个班的学生参加社会实践 有多少种不同的选法 3 选2个班的学生参加社会实践 要求这2个班来自不同年级 有多少种不同的选法 解析 1 分三类 第一类从高一年级选1个班 有6种不同方法 第二类从高二年级选1个班 有7种不同方法 第三类从高三年级选1个班 有8种不同方法 由分类加法计数原理可得 共有6 7 8 21种不同的选法 2 每种选法分三步 第一步从高一年级选1个班 有6种不同方法 第二步从高二年级选1个班 有7种不同方法 第三步从高三年级选1个班 有8种不同方法 由分步乘法计数原理 共有6 7 8 336种不同的选法 3 分三类 每类又分两步 第一类从高一 高二两个年级各选1个班 有6 7种不同方法 第二类从高一 高三两个年级各选1个班 有6 8种不同方法 第三类从高二 高三年级各选一个班 有7 8种不同的方法 故共有6 7 6 8 7 8 146种不同选法 在解决一个实际问题的过程中 常常遇到排列 组合的综合性问题 而解决问题的第一步是审题 只有认真审题 才能把握问题的实质 分清是排列问题 组合问题 还是综合问题 分清分类与分步的标准和方式 并且要遵循两个原则 一是按元素的性质进行分类 二是按事情发生的过程进行分步 排列与组合应用题的技巧 解决排列组合应用题的常用方法 1 合理分类 准确分步 2 特殊优先 一般在后 3 先取后排 间接排除 4 集团捆绑 间隔插空 5 抽象问题 构造模型 6 均分除序 定序除序 用数字1 2 3 4 5组成没有重复数字的五位数 则其中数字2 3相邻的偶数有 个 用数字作答 答案 18 2 从1 3 5 7 9五个数字中选2个 0 2 4 6 8五个数字中选3个 能组成多少个无重复数字的五位数 为亮化美化城市 现在要把一条路上7盏路灯全部改装成彩色路灯 如果彩色路灯有红 黄与蓝共三种颜色 在安装时要求相同颜色的路灯不能相邻 而且每种颜色的路灯至少要有2盏 有多少种不同的安装方法 解析 安装时要求相同颜色的路灯不能相邻 而且每种颜色的路灯至少要有2盏 这说明三种颜色的路灯的分配情况只能是2 2 3盏的形式 先讨论颜色 在选择颜色时有3种方法 选好了一种颜色后 安装时采用插空的方式 下面不妨就选上两盏红色 两盏黄色 三盏蓝灯来讨论 先排两盏红色 两盏黄色共四盏灯 如果两盏红色 两盏黄色分别两两相邻 有2种排法 则蓝色的有3种排法 共6种安装方法 如果两盏红色 两盏黄色分别两两不相邻 有2种排法 再把蓝色的安排下去有10种安装方法 所以有20种不同的安装方法 如果恰有一种颜色的相邻 则有2 6 12种不同的方法 综上共有3 38 114种不同的安装方法 3 5个男生和3个女生站成一排 则女生不站在一起的不同排法有 A 14400种B 7200种C 2400种D 1200种 答案 A 解决排列组合应用题的有效策略常见有以下几种 1 合理分类 准确分步解含有约束条件的排列组合问题 应按元素的性质进行分类 分类时需要满足两个条件 类与类之间要互斥 保证不重复 总数要完备 保证不遗漏 也就是要确定一个合理的分类标准 应按事件发生的连贯过程进行分步 分步时必须做到步与步之间互相独立 互不干扰 并确保连续性 排列组合应用题的处理方法和策略 2 特殊优先 一般在后解含有特殊元素 特殊位置的排列组合问题 一般应优先安排特殊元素 优先确定特殊位置的元素 再考虑其他元素与其他位置 也就是在解题过程中的一种主次思想 3 直接排除 灵活选择解决较复杂的排列组合问题的基本方法有两种 即直接法和排除法 直接法就是对问题进行分类求解 而排除法则先不管其中某些限制条件 求出其种数 再剔除不合题意部分即可 选择哪种方法的依据是 正难则反 4 集团捆绑 间隔插空 元素连排 捆绑为一对于某些元素要求相邻排列的问题 可先将相邻元素捆绑并看成1个 元素 再与其他元素进行排列 同时对相邻元素进行自排 元素间隔 分位插入对于某些元素需要间隔的排列问题 可用 插空法 求解 求解时注意以下几点 a 插入时必须分清 先插谁 即先排无限制条件的元素 再插入必须间隔的元素 b 数清可插的位置的个数 c 插入时是以组合形式还是以排列形式插入要把握准确 5 繁琐问题 递推策略所谓递推策略 就是先建立一个递推关系 再经过简化题目条件得出初始值 进而递推得到所求答案 6 复杂问题 构造模型对于较难的排列组合问题 可运用对应的思想方法 构造一个数学模型 使得这个数学模型与原问题存在着某种对应关系 通过解答数学模型来得到原问题的解 由1 2 3 4 5五个数字组成没有重复数字的五位数排成一递增数列 则首项为12345 第2项是12354 直到末项 第120项 是54321 问 1 43251是第几项 2 第93项是怎样的一个五位数 4 6个女学生 其中有一个领唱 和2个男学生 分成两排表演 1 若每排4人 共有多少种不同的排法 2 领唱站在前排 男学生站在后排 还是每排4人 有多少种不同的排法 二项式定理的应用 3 有些三项展开式问题可以通过变形变成二项式问题加以解决 有时也可以通过组合解决 但要注意分类清楚 不重不漏 4 对于二项式系数问题 首先要熟记二项式系数的性质 其次要掌握赋值法 赋值法是解决二项式系数问题的一个重要手段 5 用二项式定理证明整除问题 一般将被除式变为有关除式的二项式的形式再展开 常采用 配凑法 消去法 配合整除的有关知识来解决 1 求 1 2x 7的展开式中系数最大的项 2 求 1 2x 7的展开式中系数最大的项 6 1 2x 5的展开式中 x2的系数等于 A 80B 40C 20D 10答案 B 1 已知 1 x n a0 a1x a2x2 anxn 若a0 a1 a2 an 16 则自然数n等于 A 6B 5C 4D 3解析 令x 1 提2n 16 n 4 答案 C 答案 C 答案 B 4 从编号为1 2 3 10 11的11个球中 取出5个球 使这5个球的编号之和为奇数 其取法种数为 A 236B 328C 462D 2640 答案 A 5 现有4种不同颜色要对如图所示的四个部分进行着色 要求有公共边界的两部分不能用同一种颜色 则不同的着色方法共有 方法二 根据A D是否为同色分类第一类 区域A与D同色 从4色中选1色 有C种方法 其余区域B C各有3种方法有4 3 3 36种方法 第二类 区域A与D不同色 区域A有4种方法 区域D有3种方法 区域B C各有2种方法 共有4 3 2 2 48种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年康复导论考试试题及答案
- DB51-T 3286-2025 公路泡沫轻质土应用技术规范
- 2025年构型设计制图试卷及答案
- 2025年护理三基本考试题库及答案
- 广西林业考试题目及答案
- 山西省T8联考2025-2026学年高二上学期10月学业质量评价联考地理试题含答案
- 矿山智能化装备创新创业项目商业计划书
- 渔业课件教学课件
- DB41T 2875-2025城乡客运公交化运行服务规范
- 安全培训平台注册登录课件
- GB/T 30774-2014密封胶粘连性的测定
- (外研版2019)高考英语一轮单元复习课件必修1 Unit 1A new start(含详解)
- 幼儿成长档案电子通用版
- Linux操作系统课件(完整版)
- 短视频:策划+拍摄+制作+运营课件(完整版)
- 首都师范大学本科生重修课程自学申请表
- 第四章路面施工.ppt
- mr9270s文件包中文说明书
- 中国酒文化(课堂PPT)
- HIV-1病毒载量测定及质量保证指南
- Wiley数据库使用方法(课堂PPT)
评论
0/150
提交评论