双滚筒采煤机牵引部设计_第1页
双滚筒采煤机牵引部设计_第2页
双滚筒采煤机牵引部设计_第3页
双滚筒采煤机牵引部设计_第4页
双滚筒采煤机牵引部设计_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

双滚筒采煤机牵引部设计摘要MG300/690-WD型采煤机是一种多电机驱动,横向布置的交流电牵引采煤机。该机功率大,多电机横向布置,整机结构紧凑,采用交流变频调速系统,变频调速采用机载式。截割电机、牵引电机等主要元部件均可从采空区抽出,容易更换,方便维修。牵引电机输出的转矩经二级圆柱齿轮和二级行星齿轮减速器减速后,由行星架输出,通过驱动轮与行走轮相啮合,再由行走轮与工作面刮板输送机上的齿轮啮合使采煤机来回行走,同时制动轴输出轴通过键与制动器相连,实现电牵引部的制动。左右牵引部,中间电控箱的联结螺栓,定位销,摇臂与左右电牵引部铰接销轴四组,这些装置将采煤机各大部件联接成一个整体,起到紧固及连接的作用。牵引箱与行走部独立箱体设计,配套适应性强。MG300/690-WD型采煤机,操作方便,可靠性高,事故率低,开机效率高,可满足高产高效工作面的需要。关键词:采煤机;牵引部;行走部;行星齿轮Double drum shearer haulage unit designABSTRACTThe MG300/900-WD coal mining machine is more than one kind of motor-driven, crosswise arrangement alternating current hauling coal mining machine. This machine power is big, the multi-electrical machinery crosswise arrangement, the complete machine structure is compact, uses the exchange frequency conversion velocity modulation system, the frequency conversion velocity modulation uses aircraft-borne-like. Cuts the electrical machinery, the pulling motor and so on main part to be possible to extract from the worked-out section, easy to replace, facilitates the service.The pulling motor outputs torque decelerates after the second-level cylindrical gears and the second-level planet gear reduction gear, by the planet carrier outputs, with walks lining on the feet and palms of Buddha meshing through the driving gear, by walks again round and on working surface scraper conveyers rack rail meshing causes the coal mining machine back and forth to walk, simultaneously the brake spindle output shaft is connected through the key and the brake, realizes the electricity hauling department brake.About the hauling department, the middle electrically controlled boxs joint stud, the positioning pin, the rocking shaft sells the axis four groups with about electricity hauling department hinge, these installments join coal mining machine various major assemblies a whole, plays the fastening and the connection role. Traction box and walking ministry independent cabinet design, supporting strong compatibilityThe MG300/900-WD coal mining machine, the ease of operation, the reliability is high, the accident rate is low, the starting efficiency is high, may satisfy the high production highly effective working surface the need.Key word: The coal mining machine; The hauling department; Walks; Planet gear第一章 绪论1.1引言 随着科技的发展,技术的创新,煤炭生产进入高产、高效、安全和可靠的现代化发展阶段。从此,综合机械化采煤设备成为各国地下开煤矿的发展方向。自70年代以来,综合机械化采煤设备朝着大功率、遥控、遥测方向发展,其性能日臻完善,生产率和可靠性进一步提高。工矿自动检测、故障诊断以及计算机数据处理和数显等先进的监控技术已经在采煤机上得到应用。开发高产高效矿井综合配套技术是我国煤炭科技发展的主攻方向,根据世界采煤机发展潮流和煤炭科技前沿最新消息,我国采煤机应在以下方面进行攻关研究,尽快赶上世界水平。为了满足高产高效矿井发展的需要,增产减员,增产减面,实行合理化集中生产,拟研制截割功率2X500KW-2X600KW,总装机功率1200KW-1500KW以上,截深0.8-1.0m的高效电牵引采煤机;电机横向布置,框架式结构,无底托架,交流变频调速,供电电压3300V以上;强力型无链牵引系统,具有高牵引速度和牵引力;配用机载增压水泵和吸尘滚筒,操作方便,控制、保护齐全,性能良好。衡量一个国家的采煤机的技术水平,首先应对其机械设备的先进、品种、质量、可靠性、适应程度以及寿命加以分析。我国是一个发展中国家,改革开放以来,采煤机得到了很大的发展,但生产的质量、寿命、高新技术的应用、科学管理等与世界煤炭工业发达国家相比,还存在较大的差距,国外采煤机有关部件的设计寿命是:齿轮12500h,轴承20000h-30000h,电机绝缘寿命4400h,滚筒可产煤300万吨。综合工作面采煤机一般都装有自动控制、诊断、数据传输、无线电遥控装置,不仅操作方便,而且能通过诊断装置预先发现故障并及时排除。我国采煤机的齿轮、轴承、滚筒、电机等主要部件的设计寿命均低于国外水平。采煤机大部分不具有监控、诊断保护功能,不能预报诊断故障,不能保证采煤机经常处于正常状态。我国要求采煤机出150万吨-200万吨煤不大修,实际上与要求还有距离。为了满足高产高效综合采煤工作面需要快速割煤提高生产力的需要,克服液压牵引的繁杂,电牵引采煤机是采煤机发展的一个趋势。1.2采煤机的发展概况机械化采煤开始于二十世纪40年代,是随着采煤机械的出现而开始的。40年代初期,英国、苏联相继生产了采煤机,德国生产了刨煤机,使工作面落煤、装煤实现了机械化。但当时的采煤机都是链式工作机构,能耗大、效率低,加上工作面输送机不能自移,所以限制了采煤机生产率的提高。50年代初期,英国、德国相继生产出滚筒式采煤机、可弯曲刮板输送机和单体液压支柱,大大推进了采煤机械化技术的发展。由于当时采煤机上的滚筒是死滚筒,不能实现调高,因而限制了采煤机的适用范围,我们称这种固定滚筒采煤机为第一代采煤机。60年代是世界综合采煤技术的发展时期,第二代采煤机单摇臂滚筒采煤机的出现,解决了采高调整的问题,扩大了采煤机的适用范围,特别是1964年第三代采煤机双摇臂滚筒采煤机的出现,进一步解决了工作面自开缺口的问题,加上液压支架和可弯曲输送机的不断完善等等,把综采技术推向了一个新水平,并且在生产中显示了综采机械化采煤的优越性高产、高效、安全和经济。进入70年代,综采机械化得到了进一步的发展和提高,综采设备开始向大功率、高效率及完善性能和扩大使用范围等方向发展。1970年采煤机无链牵引系统的研制成功以及1976年出现的第四代采煤机电牵引采煤机,大大改善了采煤机的性嫩,并扩大了它的使用范围。80年代,德国、美国、英国都开发成功各种交、直流电牵引采煤机,同时把计算机控制系统用在采煤机上。并且开始重视系列化采煤机的开发工作,一种功率的采煤机可以派生出多种机型,主要元部件在不同功率的采煤机上都能通用,这样不仅扩大了工作面的适应范围,而且便于用户配件的管理。采煤机系列化是20世纪80年代采煤机发展中非常突出的特点。至此,缓倾斜中厚煤层的综采机械化问题已经基本得到解决,专家开始对实现厚煤层、薄煤层、急倾斜及其它难采煤层开采的综采机械的研发,以适用不同的开采条件。1.3采煤机的类型滚筒采煤机的类型很多,可按滚筒数目、行走机构形式、行走驱动装置的调速传动方式、行走部布置位置、机身与工作面输送配合导向方式、总体结构布置方式等分类。按滚筒数目分为单滚筒和双滚筒采煤机,其中双滚筒采煤机应用最普遍。按行走机构形式分钢丝绳牵引、链牵引和无链牵引采煤机。按行走驱动装置的调速方式分机械调速、液压调速和电气调速滚筒采煤机(通常简称机械牵引、液压牵引和电牵引采煤机)。按行走部布置位置分内牵引和外牵引采煤机。按机身与工作面输送机的配合导向方式分骑槽式和爬底板式采煤机。按适用的煤层厚度分厚煤层、中厚煤层和薄煤层采煤机。按适用的煤层倾角分缓斜、大倾角和急斜煤层采煤机。按总体结构布置方式分截割(主)电动机纵向布置在摇臂上的采煤机和截割(主)电动机横向布置在机身上的采煤机、截割电动机横向布置在摇臂上的采煤机。两种总体结构布置方式的分析比较:(1)整机布置纵向布置纵向布置的采煤机由左、右摇臂、左、右截割部固定减速箱、主(副)电机、牵引泵箱和中间箱共七段(或八段)组成。截割电机布置在采煤机中段、采用偏心两端出轴,一侧留出足够宽度供安装采煤机电器与控制元件。各大部件间除对接联接外,还通过地脚螺柱与底托架相联、因而机身较长。但机身宽度可做得窄些,有利于减小控顶距。横向布置滚筒采煤机采用横向布置时,截割主电机与摇臂直接相联,中间段是左、右牵引行走减速箱和中间箱(其中分成调高泵箱和电控箱两个隔腔)。这种布置方式,机身较短,无底托架,(为了克服调斜底托架铰接点多、间围大、扳动大、结构复杂和难维护等缺点,近年来采煤机改用固定式底托架,在多电机布局推广中又发展了框式底托架。机器各主要部件以插件形式装入底托架。另-趋势是取消底托架,直接用强力液压自锁螺栓将采煤机各部件固定在一起。螺栓的张紧力约为500kN,巨大的张紧力将各部件联为一个整体,采煤机因此没有底托架,使得总体结构简化,并且增加了过煤空间。采煤机工作过程中要承受震动冲击载荷,联结件采用普通高强度螺栓时,松动现象不可避免。由于采煤机工作环境的特殊性,要求螺栓松动后随时紧固和检修时按规定紧固所有联接螺栓是无法做到的。因此,采煤机在联结件松动的情况下仍继续工作是一种普遍现象,并最终导致采煤机部件和机身限位装置损坏和机器壳的某些部位变形。液压螺栓的使用从根本上解决了这些问题(2)动力传递 纵向布置纵向布置形式的采煤机,各大部件间都有动力传递,部件间的联接对中要求高。联接面存在有漏油环节。横向布置横向布置的采煤机各大部件间没有动力传递、独立性强,安装、维护、检修方便。 (3)受力状况 横向布置横向布置的采煤机,其摇臂支承座受到的截割阻力、油缸支承座受到的支承反力、行走机构受到的牵引反力均由牵引行走箱箱体来承受。受力情况简化,结构简单,可靠性高。纵向布置纵向布置的采煤机,上述几种力都要通过底托架及其对接螺栓和各大部件的对接螺栓来承受,一旦这些联接螺栓有松动,会带来严重后果。 (4)部件设计的合理性 横向布置横向布置的采煤机由于截割电机横向布置、从截割电机出轴到滚筒输出轴,全部采用正齿轮传动,省去一对加工、调整复杂的锥齿轮传动使结构简化、传动效率高、降低制造成本。纵向布置纵向布置的采煤机,因截割电机布置在中间段。从电机到滚筒输出轴必须有一对锥齿轮传动,因此加工、调整都比较复杂、制造成本高;由于电机布置在机身中段,动力从电机传到左、右滚筒输出轴,其中一端必须通过液压泵箱。为此,需要有一根贯穿液压泵箱全长的通轴,给泵箱的设计带来一定的难度,也使其结构复杂化。 (5)对煤层的适应性 纵向布置纵向布置的采煤机对煤层厚度的适应强,综采和普采都有机型。横向布置横向布置的采煤机,因主电机的长度尺寸大,采煤机的宽度相应增大。工作面的控顶距大。因而,在普采或煤层较薄以及对工作面的控顶距有严格要求的情况下,横向布置的采煤机在使用上受到一定的限制。随着电机功率的增大,电机宽度加宽,对工作面支护会带来困难。在较薄煤层时,如果使用横向布置的采煤机,还存在一个截割电机挡煤的问题。1.4采煤机的组成 采煤机主要由电动机、牵引部、截割部和附属装置等部分组成(如图1.1)。如图1.1 双滚筒采煤机电动机:是滚筒采煤机的动力部分,它通过两端输出轴分别驱动两个截割部和牵引部。采煤机的电动机都是防爆的,而且通常都采用定子水冷,以缩小电动机的尺寸。牵引部:通过其主动链轮与固定在工作面输送机两端的牵引链3相啮合,使采煤机沿工作面移动,因此,牵引部是采煤机的行走机构。左、右截割部减速箱:将电动机的动力经齿轮减速后传给摇臂5的齿轮,驱动滚筒6旋转。滚筒:是采煤机落煤和装煤的工作机构,滚筒上焊有端盘及螺旋叶片,其上装有截齿。螺旋叶片将截齿割下的煤装到刮板输送机中。为提高螺旋滚筒的装煤效果,滚筒一侧装有弧形挡煤板7,它可以根据不同的采煤方向来回翻转180。底托架:是固定和承托整台采煤机的底架,通过其下部四个滑靴9将采煤机骑在刮板输送机的槽帮上,其中采空区侧两个滑靴套在输送机的导向管上,以保证采煤机的可靠导向。调高油缸:可使摇臂连同滚筒升降,以调节采煤机的采高。调斜油缸:用于调整采煤机的纵向倾斜度,以适应煤层沿走向起伏不平时的截割要求。电气控制箱:内部装有各种电控元件,用于采煤机的各种电气控制和保护。此外,为降低电动机和牵引部的温度并提供内外喷雾降尘用水,采煤机设有专门的供水系统。采煤机的电缆和水管夹持在拖缆装置内,并由采煤机拉动在工作面输送机的电缆槽中卷起或展开。1.5采煤机牵引部的牵引方式 1.5.1机械牵引机械牵引全部采用机械传动,利用齿轮变档实现分级调速,还需液压控制系统完成操纵、控制和保护等功能,结构十分复杂,已经很少采用。1.5.2液压牵引液压牵引利用液压泵和液压马达组成的容积调速系统来驱动牵引机构。液压传动的牵引部具有无极调速特性,且易于实现换向、停止、过载保护,便于操作,能根据负载自动调速,保护系统比较完善,因而获得广泛应用;缺点是效率低,油液易污染,致使零件容易损坏,使用寿命较短。液压牵引一般采用变量泵一定量马达的容积调速系统,通过改变液压泵的排量实现无极调速,通过改变液压泵的供液方向改变牵引方向。根据所用液压马达的转速范围,分为全液压传动和液压机械传动。1.5.3电牵引电牵引是新一代采煤机采用的牵引调速方式,由单独的牵引电动机经齿轮传动驱动牵引机构。根据牵引电动机的类型分为直流电牵引和交流电牵引两类。1.6电牵引采煤机的优点(1)牵引特性较好。电牵引和液压牵引都具有良好的调速特性。但液压牵引的机械特性除了受负载影响外,还受到油液的泄漏、黏度、温度和清洁度、制造和维修质量的影响,特性曲线会慢慢变软。而电动机特性可以说主要受负载影响,所以说电牵引的牵引特性好,调速平稳性好,牵引特性曲线可长时间保持稳定。(2)机械传动效率高。电牵引没有能量多次转换问题,总效率可达0.9以上。(3)牵引力大、牵引速度高。(4)工作可靠性高。(5)易于实现微机自动控制。由于微机控制的功能齐全、计算速度很快、与电牵引电控的电参数容易配合,因此易于实现工况监测、机电保护、故障诊断、数据显示。特别是动态响应很快,电牵引微机控制的自动调整时间或滚筒卡住或闷车自动退机时间一般都在1s以内。(6)机械传动和结构较简单。1.7国际上电牵引采煤机的技术发展状况80年代以来,世界各主要产煤国家,为了适应高产高效综采工作面发展和现实矿井集约化生产的需要,积极采用新技术,不断加速更新滚筒采煤机的技术性能和结构,相继研制出一批高性能、高可靠性的“重型”采煤机。其中,最具代表的是英国安德森的Eiectra系列,德国艾克夫的SL系列,美国乔依的LS系列和日本三井三池的MCL E2DR 系列电牵引采煤机。这些采煤机,体现了当今世界电牵引采煤机的最新发展方向。德国艾柯夫公司,整机结构特点为机身3段式,两边转动部分为铸造箱体结构,中间电气部分为焊接框架结构,摇臂为分体联结,左右对称通用,可满足不同的配套要求;牵引部电气传动系统采用两直流电机他激励并列,电枢采用微机控制,励磁采用串联,既能满足四象限运行,又能满足双牵引,趋于负载均衡,目前正全力发展交流电牵引。美国乔依公司从3LS-7LS,机身为3段焊接结构形式,摇臂为分体联结、左右通用,牵引部电气传动系统为2电机串激串联,目前已开始投入使用7LS交流电牵引采煤机。日本三井三池公司RD101101和RD102102均为交流电牵引采煤机,其结构形式为以前的截割电机布置在机身的传统结构形式,机械传动和联结相当复杂。总结这些国家电牵引采煤机的技术发展有如下几个特点:装机功率和截割电动机功率有比较大幅度增加为了适应高产高效综采工作面快速割煤的需要,不论是厚、中厚和薄煤层采煤机,均在不断加大装机功率。装机功率都在1000KW左右,单个截割电机功率都在375KW以上,最高达600kw。直流电牵引功率最大达256KW,交流电牵引功率最大达260KW。电牵引采煤机已取代液压牵引采煤机成为主导机型,世界各主要采煤机产商20世纪80年代都已把重点转向开发电牵引采煤机,如德国艾柯夫公司是最早开发电牵引采煤机的,80年代中后期基本停止生产液压牵引采煤机,研制出EDW系列电牵引采煤机,90年代又研制成功交流直流两用SL300,SL400,SL500型采煤机。美国乔依公司70年代中期开始开发多电机驱动的直流电牵引采煤机,80年代先后推出3LS,4LS和6LS3个新机型,其电控系统多次改进,更趋完善。英国安德森公司80年代中期先后开发了ELECTRA1000和ELECTRA薄煤层牵引采煤机,最具代表的是MCLE2DR 101101,MDLE2DR102102采煤机,为国家首创。法国萨吉姆公司在90年代也已研制成功Panda2E型交流电牵引采煤机。交流电牵引近几年发展很快,由于技术先进,可靠性高、简单,有取代直流电牵引的趋势。自日本80年代中期研制成功第1台交流牵引采煤机,至今除美国外,其它国家如德国、英国、法国等都先后研制成功交流电牵引采煤机,是今后电牵引采煤机发展的新目标。牵引速度和牵引力不断增大液压牵引采煤机的最大牵引速度为8m/min左右,而实际可用割煤速度为45m/min, 不适应快速割煤需要。电牵引采煤机牵引功率成倍增加,最大牵引速度达1520m/min, 美国18m/min 的牵引速度很普遍,美国乔依公司的1台经改进的4LS采煤机的牵引速度高达2815m/min。由于采煤机需要快速牵引割煤,滚筒割深的加大和转速的降低,又导致滚筒进给量和推进力的加大,故要求采煤机增大牵引力,目前已普遍加大到450600KN,现在研制最大牵引力为1000KN的采煤机。多电机驱动横向布置的总体结构日益发:70年代发展中期仅有美国的LS系列采煤机、西德EDW215022L22W型采煤机采用多电机驱动,机械化动系统彼此独立,部件之间无机械传动,取消了锥齿轮传动副和复杂通轴,机械结构简单,装拆方便。目前,这类采煤机既有电牵引,也有液压牵引,既有中厚煤层用大功率,也有薄煤层的,有取代传统的截割电动机纵向布置的趋势。滚筒的截深不断增大,牵引速度的加快,支架随机支护也相应跟上,使机道空顶时间缩短,为加大采煤机截深创造了条件。10年前滚筒采煤机截深大都是630700mm,现已采用800mm,1000mm,1200mm截深,美国正在考虑采用1500mm截深的可能性。普通提高供电电压:由于装机功率大幅度提高,为了保证供电质量和电机性能,新研制的大功率电牵引采煤机几乎都提高了供电电压,主要有2300v,3300v,4160v和5000v。美国现有长臂工作面中,45%以上的电牵引采煤机供电电压为2300V。有完善的监控系统:包括采用微处理机控制的工况监测、数据采集、故障显示的自动控制系统;就地控制、无线电随机控制,并已能控制液压支架、输送机动作和滚筒自动调高。高可靠性;据了解美国使用的ELECTRA1000型采煤机的时间利用率可达95%98%,采煤量350万t以上,最高达1000万。1.8国内电牵引采煤机的发展状况1.8.1. 20世纪70年代是我国综合采煤机械化采煤起步阶段20世纪70年代初期,煤炭科学研究总院上海分院集中主要科技骨干,研制出综采面配套的MD-150型双滚筒采煤机,另外一方面改进普采配套的DY100型、DY150型单滚筒采煤机;70年代我国采煤机的发展有以下特点:1.装机功率小例如,MLS3-170型双滚筒采煤机,装机功率170KW;KD-150型双滚筒采煤机,装机功率150KW;DY-150型单滚筒采煤机,装机功率100KW和150KW。2.有链牵引,输出牵引力小此时期的采煤机牵引方式都是圆环链轮与牵引链轮啮合传动,传递牵引力小,牵引力在200KN以下。3.牵引速度低由于受液压元部件可靠性的限制,设计的牵引力功率较小,牵引速度一般不超过6m/min。4.自开切口差由于双滚筒采煤机摇臂短,又都是有链牵引,很难割透两端头,且容易留下角煤,故需要人工清理,单滚筒采煤机更是如此。5.工作可靠性较差我国基础工艺比较薄弱,元部件质量较差,反映在采煤机的寿命普遍较低,特别是液压元部件的损坏比较严重。1.8.2.20世纪80年代是我国采煤机发展的兴旺时期20世纪70年代后期,我国总共引进143套综采煤成套设备。世界主要采煤机生产国如英国、德国、法国、波兰、日本等都进入中国市场,其技术也展示在中国人的面前,为我们深入了解外国技术和掌握这些技术创造了条件,同时通过20世界70年代自行研制采煤机的实践,获得了成功和失败的经验与教训,确立了我国采煤机的发展方向,即仿制和自行研制并举。解决难采煤层的问题是20世纪80年代重大课题之一:具体的课题是薄煤层综合机械化成套设备的研制:“三硬”、“三软”4.5m一次采全高综采设备的研制:解决短工作面的开发问题,短煤臂采煤机的研制。据初步统计,20世纪80年代自行开发和研制的采煤机品种有50余种,是我国采煤机收获的年代,基本满足我国各种煤层开采的需要,大量依靠进口的年代已一去不复返了。20世纪80年代采煤机的发展有如下特点:1重视采煤机系列的开发,扩大使用范围20世纪70年代开发的采煤机,一种类型只有一个品种,十分单一,覆盖面小,很难满足不同煤层开采需要。20世纪80年代起重视系列化采煤机的开发工作,一种功率的采煤机可以派生出多种机型,主要元部件在不同功率的采煤机上都能通用,这样不仅扩大了工作面的适应范围,而且便于用户配件的管理。采煤机系列化是20世纪80年代采煤机发展中非常突出的特点。2元部件攻关先行,促使采煤机工作可靠性的提高总结20世纪70年代采煤机开发中的经验教训,元部件的可靠性直接决定采煤机开发的成功率,所以功关内容为:主电机的攻关,以解决烧机的现象;齿轮攻关,从选择材质上,热处理工艺上着手,学习国内外先进技术成功经验,以德国齿轮为目标进行攻关,达到预期目的,解决了低速重载齿轮早失效的问题:液压系统和液压元部件的攻关,主油泵和油马达的可靠性直接影响牵引部工作的可靠性,在20世纪80年代中期,把斜轴泵、斜轴马达、阀组和调速机构等都列入重点攻关内容。3无链牵引的推广使用,使采煤机工作平稳,使用安全在引进大功率采煤机的同时,无链牵引技术传入中国,德国艾柯夫公司的销轨式无链牵引和英国安德森公司的齿轨式无链牵引占绝大多数,而且技术成熟。为此,我国研制采煤机的无链牵引都向引进机组的结构上靠拢。仿制和引进技术生产的采煤机更是如此。无链牵引使采煤机工作平稳,使用安全,承受的牵引力大,因此,得到用户的广泛欢迎,大功率采煤机都采用无链牵引系统。1.8.3. 20世纪90年代至今是我国电牵引采煤机发展的时代进入20世纪90年代后,随着煤炭生产向集约化方向发展,减员提效,提高工作面单产成为煤炭发展的主流,发展高产高效工作面势在必行,此采煤机开发研制围绕高产高效的要求进行,其主要方向是:(1)大功率高参数的液压牵引采煤机:最具代表性的机型是MG2X400W型采煤机。(2)高性能电牵引采煤机:电牵引采煤机的研制从20世纪80年代开始起步,20世纪90年代全面发展,电牵引的发展存在直流和交流两种技术途径。进入20世纪90年代后,交流变频调速技术在中厚煤层采煤机中推广使用,上海分院先后开发成功MG200/500-WD、MG200/450-BWD、MG250/600-WD、MG400/920-WD和MG450/1020-WD等采煤机,变频调速箱可以是机载,也可以是非机载。另外派生出8种机型,都已投入使用,取得较好的效果。太原矿山机械厂在引进英国Electra1000直流电牵引全套技术的基础上,开发出MG400/900-WD和MG250/600-WD型两种电牵引采煤机,鸡西煤机厂、辽源煤机厂也开发了交流电牵引采煤机。国产电牵引采煤机虽然发展速度很快,但在性能和可靠性上与世界先进国家的I采煤机相比,还存在较大的差距,所以一些有实力的矿务局,在装备高产高效工作面时,把目光移到国外,进口国外先进电牵引采煤机。如神府华能集团引进美国的7LS、6LS电牵引采煤机;兖州矿业集团公司引进德国的SL-500型和日本的MCLE-DR102型交流电牵引采煤机,但由于价格昂贵,故引进数量较少,90年代采煤机技术发展的特点如下:1多电机驱动横向布置的总体结构成为电牵引采煤机发展的主流我国开发的电牵引采煤机,一般都采用横向布置。各大部件由单独的电动机驱动,传动系统彼此独立,无动力传递,结构简单,拆装方便,因而有取代电动机纵向布置的趋势。2我国采煤机的主要参数与世界先进水平的差距在缩小在装机功率方面,我国的液压牵引采煤机装机功率达到800KW,电牵引采煤机装机功率达到1020KW,其牵引功率为2X50KW,可满足高产高效工作面对功率的要求。在牵引力和牵引速度方面,电牵引的最大牵引力已达到700KN,最大牵引速度达1256m/min,微处理机的工矿监测、故障显示、无线电离机控制等方面已达到较高技术水平。3液压紧固技术的开发研究取得成功采煤机连接构件经常松动是影响工作可靠性的重要因素,而且解决难度较大,液压螺母和专用超高压泵,在电牵引采煤机中得到推广应用,防松效果显著,基本解决采煤机连接可靠性的问题。回顾这30多年我国采煤机发展的历程,走的是一条自力更生和仿制引进结合的道路,也是一条不断学习国外先进技术为我所用的发展道路,从20世纪70年代主要靠进口采煤机来满足我国生产需要,到近年几乎是国产采煤机占我国整个采煤机市场,这也是个了不起的进步。我国从20 世纪80 年代末期, 煤科总院上海分院与波兰合作研制开发了我国第1 台MG3442PWD薄煤层强力爬底板交流电牵引采煤机, 在大同局雁崖矿使用取得成功。借助MG3442PWD 电牵引采煤机的电牵引技术, 对液压牵引采煤机进行技术更新。第1 台MG300/ 6802WD 型电牵引采煤机是在鸡西煤矿机械厂生产的MG300 系列液压牵引采煤机的基础上改造成功, 并于1996 年7 月在大同晋华宫矿开始使用。与此同时, 在太原矿山机器厂生产的AM2500 液压牵引采煤机上应用交流电牵引调速装置改造MG375/8302WD 型电牵引采煤机。截止目前, 我国已形成5 个电牵引采煤机生产基地, 鸡西煤矿机械厂、太原矿山机器厂、煤炭科学研究总院上海分院、辽源煤矿机械厂生产交流电牵引采煤机, 西安煤矿机械厂则生产直流电牵引采煤机。我国近期开发的电牵引采煤机有以下特点:(1) 多电机驱动横向布置电牵引采煤机。截割电机横向布置在摇臂上, 取消了螺旋伞齿轮和结构复杂的通轴。(2) 总装机功率、牵引功率大幅度提高, 供电电压(对单个电机400kW 及以上) 由1140V 升至3300V , 保证了供电质量和电机性能。(3) 电牵引采煤机以交流变频调速牵引装置占主导地位, 部分厂商同时也研制生产直流电牵引采煤机。(4) 主机身多分为3 段, 取消了底托架, 各零部件设计、制造强度大大提高, 部件间用高强度液压螺母联接, 拆装方便, 提高了整机的可靠性。(5) 电控技术研究和采煤机电气控制装置可靠性不断提高。在通用性、互换性和集成型方面迈进了一大步, 功能逐步齐全, 无线电随机控制研制成功, 数字化、微机的电控装置已进入试用阶段。第二章 牵引部的设计2.1牵引机构传动系统图2.1牵引机构传动系统图2.1.1主要技术参数主要技术参数及配套设备:采高(m):2.23.5适应倾角():25; 煤质硬度 : f4;截深(m):0.8滚筒直径 (m): 1.6 电压(V):380;牵引形式 :滚轮齿轨电牵引;牵引电机型号:YB2-200L-4装机功率(KW):690 (其中两个截割电机2300KW两个牵引电机230KW,一个泵电机30KW,共计230023030=690KW)2.1.2电动机的选择设计要求牵引部功率为30KW,根据矿井电机的具体工作环境情况,电机必须具有防爆和电火花的安全性,以保证在有爆炸危险的含煤尘和瓦斯的空气中绝对安全,而且电机工作要可靠,启动转矩大,过载能力强,效率高。所以选择由异步防爆电动机,型号为YB2-200L-4;其主要参数如下:额定功率:30KW;额定电压:380V;满载电流:57.6A;额定转速:1470r/min;满载效率:0.92;满载功率因数:0.86;接线方式:Y;质量:335KG;冷却方式:水冷2.1.3传动比的分配在进行多级传动系统总体设计时,传动比分配是一个重要环节,能否合理分配传动比,将直接影响到传动系统的外阔尺寸、重量、结构、润滑条件、成本及工作能力。多级传动系统传动比的确定有如下原则:1.各级传动的传动比一般应在常用值范围内,不应超过所允许的最大值,以符合其传动形式的工作特点,使减速器获得最小外形。2.各级传动间应做到尺寸协调、结构匀称;各传动件彼此间不应发生干涉碰撞;所有传动零件应便于安装。3.使各级传动的承载能力接近相等,即要达到等强度。4.使各级传动中的大齿轮进入油中的深度大致相等,从而使润滑比较方便。由于采煤机在工作过程中常有过载和冲击载荷,维修比较困难,空间限制又比较严格,故对行星齿轮减速装置提出了很高要求。因此,这里先确定行星减速机构的传动比。设计采用NGW型行星减速装置,其工作原理如下图所示:a太阳轮 b内齿圈 c行星轮 h行星架图2.2 NGW型行星机构该行星齿轮传动机构主要由太阳轮a、内齿圈b、行星轮c、行星架h等组成。传动时,内齿圈b固定不动,太阳轮a为主动轮,行星架h上的行星轮c绕自身的轴线oxox转动,从而驱动行星架h回转,实现减速。运转中,轴线oxox是转动的。这种型号的行星减速装置,效率高、体积小、重量轻、结构简单、制造方便、传动功率范围大,可用于各种工作条件。因此,它用在采煤机截割部最后一级减速是合适的,该型号行星传动减速机构的使用效率为0.970.99,传动比一般为2.113.7。如图2.2,当内齿圈b固定,以太阳轮a为主动件,行星架h为从动件时,传动比的推荐值为2.79。从采掘机械与支护设备上可知,采煤机截割部行星减速机构的传动比一般为56。所以这里先定行星减速机构传动比:ii根据前述多级减速齿轮的传动比分配原则及齿轮不发生根切的最小齿数为17为依据,另参考MG250/591型采煤机截割部各齿轮齿数分配原则,初定齿数及各级传动比为:i=z/z=2.84i=z/z=2.132.2牵引部传动计算2.2.1各级传动转速、功率、转矩1) 各轴转速计算:从电动机出来,各轴依次命名为、轴。轴 nr/min 轴 n= n/ i=1470/2.84=517.6 r/min轴 n= n/ i =517.6/2.13 =243 r/min 轴 n= n/ i=243/6.3=38.57 r/min轴 n= n/ i=38.57/4.5=8.57 r/min2) 各轴功率计算:轴 =300.990.98=29.1kW轴 .=29.10.980.97=27.66kW轴 P=P=27.660.980.97=26.29 kW轴 P=P= 26.290.980.97=25kW轴 P=P=250.980.97=23.77 kW式中 滚动轴承效率 =0.99闭式圆柱齿轮效率 =0.98花键效率 =0.98轴承 =0.973) 各轴扭矩计算:轴 T=9550轴 T=9550轴 T=9550轴 T=9550轴 T=9550将上述计算结果列入下表:轴号输出功率P(kW)转速n(r/min)输出转矩T/(Nm)传动比轴29.11470189.052.84轴27.66517.6510.342.13轴26.292431033.216.3轴25.0038.576190.044.5轴23.778.5726488.161.36 如图表2.32.3牵引部齿轮设计计算2.3.1齿轮1和齿轮2的设计及强度效核计算过程及说明:1)选择齿轮材料查1表 两个齿轮都选用20GrMnTi渗碳淬火2)按齿面接触疲劳强度设计计算确定齿轮传动精度等级,按估取圆周速度。小轮分度圆直径,由式得齿宽系数:查表按齿轮相对轴承为非对称布置,取08小轮齿数: =25轮齿数: i=71齿数比 : /=71/25传动比误差 误差在范围内小轮转矩: T=189050.N载荷系数: 由文献1式(854)得使用系数: 查表 175动载荷系数: 在推荐值1.051.4 12齿向载荷分布系数: 在推荐值1.01.2 1.1齿间载荷分配系数:在推荐值1.01.2 则载荷系数的初值 =1.75 =2.541 弹性系数: 查表 节点影响系数: 可知:重合度系数: Z=0.89许用接触应力: 由式接触疲劳极限应力: 查文献=1430N=1430N应力循环次数: 由式N=60njL得N=60njL=60N= N/i=/2.84=2.795 则 查文献1图870得接触强度得寿命系数=1 ,(不许有点蚀)硬化系数: 查文献1图871及说明 1接触强度安全系数:查文献1表827,按较高可靠度查S=11.5, 取故的设计初值为d =66.587mm齿轮模数: m=d/Z=66.587/25=2.67查表 取m=4mm小齿分度圆直径的参数圆整值:=25小轮分度圆直径: d=mZ=4中心距 : =m/2(Z+ Z)=192mm 齿宽: b=0.8mm圆整 b=54mm齿宽: 小轮齿宽: =60齿根弯曲疲劳强度效荷计算由文献1式 齿形系数: 查文献 小轮Y=2.62 大轮Y=2.222应力修正系数: 查文献 小轮Y=1.59大轮Y=1.752重合度 =1.675重合度系数:由式=0.25+0.75/1.675=0.698许用弯曲应力:由式 弯曲疲劳极限: 查图弯曲寿命系数: 查图 尺寸系数: 查图安全系数: 查表 S=1.5则公式: =129.33=108.78合格2.3.2齿轮3和齿轮4的设计及强度效核计算过程及说明:1)选择齿轮材料查表 两个齿轮都选用20GrMnTi渗碳淬火2)按齿面接触疲劳强度设计计算确定齿轮传动精度等级,按估取圆周速度 小轮分度圆直径,由式得齿宽系数:查表按齿轮相对轴承为非对称布置,取08小轮齿数: =38大齿数: i=80.94圆整取=81齿数比 : /=81/38传动比误差 误差在范围内小轮转矩: T=510340N载荷系数: 由文献1式(854)得使用系数: 查表 175动载荷系数: 在推荐值1.051.4 12齿向载荷分布系数: 在推荐值1.01.2 1.1齿间载荷分配系数:在推荐值1.01.2 则载荷系数的初值 =1.75 =2.541 弹性系数: 查表 节点影响系数: 可知:重合度系数: Z=0.89许用接触应力: 由式接触疲劳极限应力: 查文献=1430N=1430N应力循环次数: 由式N=60njL得N=60njL=60N= N/i=/2.13=1.312 则 查文献1图870得接触强度得寿命系数Z= Z=1硬化系数: 查文献1图871及说明 1接触强度安全系数:查文献1表827,按较高可靠度查S=11.5, 取故的设计初值为d =95.33mm齿轮模数: m=d/Z=95.33/38=2.51 查表 取m=4mm小齿分度圆直径的参数圆整值:=38小轮分度圆直径: d=mZ=4中心距 : =m/2(Z+ Z)=238mm 齿宽: b=0.8mm轮齿宽: 小轮齿宽: =82mm齿根弯曲疲劳强度效

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论