2010年高考数学试卷分析及.ppt_第1页
2010年高考数学试卷分析及.ppt_第2页
2010年高考数学试卷分析及.ppt_第3页
2010年高考数学试卷分析及.ppt_第4页
2010年高考数学试卷分析及.ppt_第5页
已阅读5页,还剩158页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010年高考数学试卷分析及2011年高考命题趋势 本讲提纲 一 2010年高考试题特点与启示二 各单元命题的新方向与复习的建议 7个单元 复习总体安排 1 第一轮复习 到2011年1月底前 市一摸考试2 第二轮复习 到3月20日前完成 市二摸考试3 综合复习 4月初 5月10日完成 省调研考试市三摸考试4 强化训练与考前指导 5月15日 5月底 市四摸考试5 6月1 5日调整 回到基础 参加高考 一 2010年的高考试题特点与启示 1 考查了数学学习的基本功 阅读量大 运算量大 思考量大 综合性强 运算技能 恒等变换 学习过程中养成的锲而不舍的钻研精神和品质与数学学习心理素质等是高考解题获胜所必须的基本功 如试题的综合性强 理1 单纯靠考前突击 押题等短期行为不可能应付高考 2 对数学核心能力的考查越来越到位 思维是试题的又一亮点 如 数学变形能力 三角公式的变形 统计今后还会走向更实际实用价值解析几何 立体几何 考查的重心和出题方向变化最大函数导数 数列 没有变化 今后也不会有大变化 3 突出了对数学概念的本质的考查 如积分 几何概型 三视图的考查 问法与众不同 逆向 充分体现新课改 4 试卷体现数学知识的基础性的重要作用 如 平面几何基础就很重要 在整个试卷中成为必备的数学基础 如16题等 许多题需要有平几知识 5 试题形式有变化 启示 一 关于学生 1 真功夫多动手多做题 琢磨能力 附中教法 学生本领2 学生主体教学中调动学生动手是关键3 有条理地 数学地 思考习惯和心理准备也很关键 启示 二 关于教师 1 掌握考纲严格依据和所明确的精神进行复习备考 按照考纲的要求指导学生进行复习 总结 训练 切实降低重心不刻意追求偏难怪的题目避免 复习方向 上的指导偏差 教师中 想当然 现象时有发生 能力要求的变化 2 突出重点全面复习 要注重回归课本 扎实基础全面复习 1 系统地对数学知识进行整理归纳 形成知识链知识网 2 从知识的联系和整体上把握基础知识 沟通知识间的内在联系 狠抓基础 精选习题有效训练 努力提高学生的能力 3 提高复习的有效性 要联系近4年来的高考新题目 对学生提出知识 技能 思想方法与解题途径等方面的注意事项与要求 存在的问题是 基础知识落实不够 注意了知识的再现 而归纳与整理不足 动手能力不够 启示 三 关于教学内容1 重视各知识块之间的交汇和整合 在知识交汇点处设计试题 特别是新增内容与原有内容的整合是今年高考命题的一大亮点如 1 用导数研究函数的性质 2 用空间向量研究立体几何中的位置关系及角度计算等3 新课标教材又增加的三视图 函数的零点与方程的根 算法等内容 这些新增的内容无疑是高考命题的热点问题 如080910三年的海南试题 就足以说明这一切 2 研磨解题要着重研究解题的思维过程重视思想方法 讲为何这样想 这样解 展示教师的思维过程 解同一个问题可以有多条途径 培养学生分析探究的解题能力 解题教学重分析 注重通性通法 兼顾特殊技巧 倡导理性思维强化探究能力的培养是高中数学教与学的大势所趋 尊重学生的个性差异因才施教突出复习的针对性与实效性则是取得考试成功的良方 几点思考 1 课堂教学要把握新课程内容的深广度2 对教材结构的认识要更新 螺旋式安排教材内容贴近社会和生活 二 各单元命题的新变化 7个单元 1 集合与逻辑 2 函数与导数 3 数列 4 不等式 不等式选讲 5 复数 6 算法初步与框图 7 计数原理与二项式定理 一 集合与逻辑 1 集合 知识 考题 能力 显性试题与隐性试题 2010年全国2卷 1 文 理 已知集合则 考查了对集合符号 区间符号的理解 绝对值的意义 常用数集符号的识别 解简单无理不等式 交集运算 数轴的使用 共7项 2010四川文理 16 设S为复数集C的非空子集 若对任意 都有 则称S为封闭集 下列命题 集合S a bi 为整数 为虚数单位 为封闭集 若S为封闭集 则一定有 封闭集一定是无限集 若S为封闭集 则满足的任意集合也是封闭集 其中真命题是 写出所有真命题的序号 解 直接验证可知 正确 当S为封闭集时 因为x y S 取x y 得0 S 正确对于集合S 0 显然满足所有条件 但S是有限集 错误取S 0 T 0 1 满足 但由于0 1 1 T 故T不是封闭集 错误解题方法 特殊值 反例 2010重庆理 12 设U A 若 则实数m 解析 A 0 3 故m 3综合性强 2010福建文 15 对于平面上的点集 如果连接中任意两点的线段必定包含于 则称为平面上的凸集 给出平面上4个点集的图形如下 阴影区域及其边界 其中为凸集的是 写出所有凸集相应图形的序号 答案 2010江苏卷 1 设集合A 1 1 3 B a 2 4 A B 3 则实数a 解析 3B a 2 3 a 1 考查集合的运算与推理 a2 集合怎样考 考试内容与要求 文理同 1 集合的含义与表示 了解集合的含义 体会元素与集合的 属于 关系 能用自然语言 图形语言 集合语言 列举法或描述法 描述不同的具体问题 2 集合间的基本关系 理解集合之间包含与相等的含义 能识别给定集合的子集 在具体情境中 了解全集与空集的含义 3 集合的基本运算 理解两个集合的并集与交集的含义 会求两个简单集合的并集与交集 理解在给定集合中一个子集的补集含义会求给定子集的补集 能使用Venn图表达集合的关系及集合的基本运算 集合考查的新动向 1 考查重点 集合符号的理解 抽象思维能力2 将加强对集合与集合之间的关系 集合的计算与化简的考查3 预测命题趋势1 用集合的形式考函数预测命题趋势2 分类讨论与逻辑推理预测命题趋势3 存在性与唯一性问题 1 把集合作为一种语言来学习教学中要提供自然语言 集合语言 图形语言互相转换的机会 教学中需加强 创设使用集合语言描述数学对象的情境 集合教学理念上的变化 习题 2 集合学习中 注重归纳 概括 类比等思维方法由实例归纳 概括出集合含义类比数的关系 运算引入集合的关系 运算 不仅会集合的交 并 补的运算 而且把集合当作认识问题的工具来学习 1 集合的观点是整体认识问题的观点 2 用集合理解数学概念 3 用集合解题 理解数学概念 解题 例函数R 区间M a b a b 集合N y y f x x M 则使M N成立的实数对 a b 有A 0个B 1个C 2个D 无数多个 预测趋势1 用集合的形式考函数 函数R 是奇函数 解法一解法二 例设集合则 A B C D 本题考查对集合的表示法 集合的相等 集合的包含关系等基础知识 预测趋势2 分类讨论与逻辑推理 2 逻辑 逻辑主要考查 命题真假判断逻辑联结词全称量词与存在量词充分性与必要性考查逻辑的背景 函数 指数对数函数三角函数 立体几何 向量等 小知识点 2010全国2卷理科 5 已知命题 函数在上为增函数 函数在上为减函数则在命题 中 真命题是 考查 共4项 命题真假的判断能力 命题的运算关系的理解 对集合的运算关系掌握的程度 函数单调性的判断与理解程度 2009宁夏卷高考逻辑题 有四个关于三角函数的命题 其中假命题的是 A B C D 2009高考逻辑题的解析 考查知识与能力 命题真假判断 对三角公式的理解和应用 考察方法与思维 要判断一个命题为假命题 只需举出一个反例即可 09山东 文理同 5 已知 表示两个不同的平面 m为平面 内的一条直线 则 是 的 B A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件解析 考查知识与能力 充要条件的概念 立体几何中垂直关系的判定 考察方法与思维 充要条件的判断 应正逆互推 2009年辽宁 文理 11 下列4个命题 1 2x 1 3x 1 2x 1 3x其中的真命题是D A B C D 2 逻辑命题新趋向 主要是对概念准确的记忆和深层次理解1 不考抽象定义 不考纯理论而是用掌握的理论结合具体数学问题进行具体分析 2 考查重点 充要条件 命题的真假 全称量词和存在量词的意义 含一个量词的命题的否定复习方向 学好基本方法和基本概念逻辑定义 符号的认识 3 常用逻辑用语考试的内容和要求 文理同 1 理解命题的概念2 了解若则形式的命题及其逆命题 否命题与逆否命题 会分析四种命题的相互关系 3 理解必要条件 充分条件与充要条件的含义 4 了解逻辑联结词 或 且 非 的含义 5 理解全称量词和存在量词的意义 6 能正确地对含有一个量词的命题进行否定 4 常用逻辑用语复习中注意 1 重点关注四种命题的相互关系 和命题的必要条件 充分条件 充要条件 这部分试题出现的命题 是指明确地给出条件和结论的命题 对 命题的逆命题 否命题与逆否命题 只要求做一般性了解 2 对逻辑联结词 或 且 非 的含义 只要求能正确地表述相关的数学内容 3 对于量词 重在理解它们的含义 不要追求它们的形式化定义 避免对逻辑用语的机械记忆和抽象解释 例设p f x x3 2x2 mx 1在 内单调递增 q m 则p是q的A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 f x x3 2x2 mx 1在 内单调递增 例关于x的不等式x2 25 x3 5x2 ax在 1 12 上恒成立 求实数a的取值范围 二 函数与导数 函数与方程导数及其应用 函数是高中数学内容的知识主干 是考查的重点 学习函数划分为三个阶段 第一阶段 必修1 主要学习函数的概念函数的图像与性质 以指数函数 对数函数 幂函数为例 重点学习函数的单调性 函数与方程 函数模型及其应用 第二阶段 必修4 是三类三角函数重点学习函数的周期性图象变换和应用 第三阶段 选修2 2 是函数的导数重点落实在导数的应用 即用导数研究函数的单调性 极值和最值 1 函数考试的内容和要求 文理同 了解构成函数的要素 会求一些简单函数的定义域和值域 了解映射的概念 在实际情境中 会根据不同的需要选择恰当的方法 如图象法 列表法 解析法 表示函数 了解简单的分段函数 并能简单应用 函数分段不超过三段 理解函数的单调性 最大 小 值及其几何意义 了解函数奇偶性的含义 会运用基本初等函数的图象分析函数的性质 2 导数及其应用考试内容与要求 9条 1 了解导数概念的实际背景2 通过函数图象直观理解导数的几何意义 3 能根据导数定义求函数y x3 y x1 2的导数 4 能利用以下给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数 并了解复合函数求导法则 能求简单的复合函 仅限于形如f ax b 的复合函数 的导数 文科没有这句话 常见的基本初等函数的导数公式 8个常见的导数运算法则 加减乘除4个 5 了解函数的单调性与导数的关系 能利用导数研究函数的单调性 会求函数的单调区间6 了解函数在某点取得极值的必要条件和充分条件 会用导数求函数的极大值 极小值 会求闭区间上函数最大值 最小值 其中多项式函数不超过三次 5 6指明了 导数在研究函数中的应用 7 会用导数解决实际问题 与不等式部分的关系 生活中的优化问题举例 定积分与微积分基本定理 理科 8 了解定积分的实际背景 了解定积分的基本思想 了解定积分的概念 9 了解微积分基本定理的含义 标准 对 导数及其应用 内容的基本定位 1 强调对导数本质的认识 不仅作为一种规则 更作为一种重要的思想 方法来学习 2 体现导数的应用价值 了解导数是研究事物变化快慢 研究函数单调性 极大 小 值 最值和解决生活中优化问题的有力工具 导数应用的广泛性 1 函数考查的5个新变化 1 函数的单调性考查力度加大 奇偶性和抽象函数减弱 2 函数考查走向综合化 与不等式 方程结合 题目涉及的函数多为简单函数的运算形式 3 函数与导数的结合成为热点 多为压轴题 选择题填空题也有出现 分析推理和讨论列举成风 4 函数图象的考查及函数值的变化趋势被三角和导数几何意义替代 利用平移变换 伸缩变换 对称变换 图象的对称性 5 对指数函数对数函数与幂函数的考查 突出基本知识和计算大多是以基本函数的性质为依托 结合运算推理来解决 能运用函数性质比较熟练地进行有关函数式的大小比较 方程解的讨论等 2 导数 考查的4个新变化 1 突出导数概念的本质复习时注意落实书上的实例 速度 膨胀率 效率 增长率等 反映导数本质的认识和理解的习题要加强 2 强调导数的应用在以往微积分的教学中 更多的是计算导数 会按步骤求极值 最值 忽视导数作为一种通法的意义和作用 课标要求 不仅会算 而且使学生真切地感受导数在研究函数性质中的作用 如 用配方法求二次函数的极值只是特殊情况下的一个特殊解法 不能解决一般函数的极值问题 标准 通过实际问题和优化问题举例 充分体现导数在研究事物的变化率 变化的快慢 研究函数的基本性质和优化问题中的应用 3 淡化形式上的导数计算复习导数的计算时 几个常见的函数的导数 基本初等函数的导数 导数的运算法则来计算导数 4 重视对导数几何意义的认识用导数几何意义解题 通过图形考导数的作用 以往教材对导数几何意义的处理和要求较弱 标准 提高了用导数几何意义解决问题的要求 导数命题方向的创新 一是研究对象的多元化由研究单一函数 转向研究两个函数或多个函数之间关系 或多变量的函数 二是研究内容的多元化 作用的实用性由用导数研究函数的性质 单调性 极值 最值 目的是单纯地研究函数 转向运用导数通过对函数的性质研究 达到对诸如函数图象的交点和方程根的分布等综合问题的研究 目的是解决某数学问题 趋向 运用导数探讨函数图象的交点问题 几何切线问题 函数性质等 函数考查的趋势 1 对函数的考查要求较高 主要考查 函数图象 奇偶性 单调性 导数及应用 抽象函数等2 特别强调对函数的本质属性的认识突出了导数作为研究函数性态工具性重点考查分类与整合 函数与方程思想以及运算求解能力 淡化复合函数的单调性对称性等性质问题 函数与导数的复习建议 在复习中 要突出重点 真正掌握 灵活应用 1 真正掌握 理解函数的本质从实际背景和定义两个方面构建函数的概念列举各种各样的函数 2 灵活应用 对指数函数 对数函数 幂函数等具体函数的理解和应用 还要注意其他 实际函数 函数与导数复习建议一 首先 必须明确的要求 避免复习方向的偏差 1 指数函数考试的内容和要求 文理同 了解指数函数模型的实际背景 理解有理指数幂的含义 了解实数指数幂的意义 掌握幂的运算 理解指数函数的概念及其单调性 掌握指数函数的图象通过的特殊点 会画底数为2 3 10 0 5 0 33的指数函数的图象 体会指数函数是一类重要的函数模型 指数幂的教学 1 整数指数幂的概念及其运算性质是基础 2 有理指数幂及其运算性质 以及实数指数幂的意义及其运算性质3 体会 用有理数逼近无理数 的思想 感受 逼近 过程 2 对数函数考试的内容和要求 文理同 理解对数的概念及其运算性质 知道用换底公式能将一般对数转化成自然对数或常用对数 了解对数在简化运算中的作用 理解对数函数的概念及其单调性 掌握对数函数图象通过的特殊点 会画底数为2 10 0 5的对数函数的图象 体会对数函数是一类重要的函数模型 了解指数函数y ax与对数函数y logax互为反函数 a 0 a 1 3 幂函数考试的内容和要求 文理同 了解幂函数的概念 结合函数y x y x2 y x3 0 5 1的图象 了解它们的变化情况 4 二次函数 二次函数知识和方法是解函数问题的基础1 直接考二次函数 图象单调性最值等2 导数题间接使用 在三次函数 分式函数中 通过导数最终归结为二次函数 如09福建10题 函数的图象关于直线对称 据此可推测 对任意的非零实数 关于的方程的解集不可能是 5 函数与方程考试的内容和要求 文理同 结合函数的图象 了解函数的零点与方程根的联系 判断方程根的存在性与根的个数 二分法 能够借助计算器用二分法求相应方程的近似解 了解这种方法是求方程近似解的常用方法 考纲没有要求 6 函数模型及其应用考试的内容和要求 文理同 了解指数函数 对数函数幂函数的增长特征 结合实例体会直线上升 指数增长 对数增长等不同函数类型增长的含义 了解函数模型 如指数函数 对数函数 幂函数 分段函数等在社会生活中普遍使用的函数模型 的广泛应用 函数与导数复习建议二 其次 打好基础 研究函数的基本题型与解题思想和方法突出函数的工具性和思想性 导数试题的设计1 利用函数思想解题 2010年4题 4 如图质点P在半径为2的圆周上逆时针运动 其初始位置为P0 角速度为1 那么点P到x轴距离d关于时间t的函数图像大致为解 由点的位置知 失分原因 直接求解析式求解时易出现判断失误 2010年11题 11 已知函数若互不相等 且则的取值范围是 A B C D 以分段函数形式考查一次函数对数函数单调性 可用分类讨论的方法去掉绝对值符号本题失分原因 找不到解题方向 2 利用导数对方程根的讨论是重点 已知函数 1 判断函数在区间 0 上的单调性 并加以证明 2 若关于 的方程 有四个不同的实数解 的取值范围 求 分析 2007年江苏卷最后压轴题就是这类题 得分率低 概念不清 计算出错 图象画错 方程解与图象交点的转化不能实现 数形结合能力差 函数与方程 是新课程明确下来的重点内容 函数零点的研究 和 解 1 含有绝对值符号 咋求导数 讨论正负零 说明什么 对运用极限思想研究 在和上是增函数 则 在 减 在 上是增 如图 2 当x 0时 令 例题的图形 0 设 例3图形变得简单了 1 1 2 y h x 结论 构造的函数应比较简单如 3 导数压轴题的规律分析 2010年全国2卷 21 设函数 1 若 求的单调区间 2 若当时 求的取值范围 解 1 时 当时 当时 II 由 I 知当且仅当时等号成立故从而当 即时 而 于是当时 由 可得从而当时 故当时 而 于是当时 综合得的取值范围为 本题难点1 题意没理解 实际是恒成立问题 2 若当时 求的取值范围本题难点2 没想到用 1 的结论对导数式放缩变形 本题难点3 不知道对什么字母进行讨论对进行分类讨论 单纯按恒成立问题的一般解法进行陷入困境而丢分 这类 难题 难在何处 1 读题时 某些函数表达式在 感觉上 不好掌握 或某种叙述的 新形式 不好理解 复杂的印象 是心理上的考验 2 常规解题步骤不能顺利求解时 不能利用 逆推分析法 分类讨论法 数形结合法 等数学方法去 试探 和 专研 遇挫即溃3 函数 方程 不等式三者之间的综合题做的太少不能综合分析和运用4 用导数工具来研究函数的性状时 目的不明 5 字母多于一个时 思维混乱 不知道对哪个进行分析讨论 核心难点 对导数正负符号无法直接判定时不知道如何探索解题思路 尽管这种讨论法已经连续考了多年 09年宁夏导数题 已知函数 1 若 求的单调区间 2 若在 上单调递增 在上单调递减 证明 由是的两根 得比较系数得 2010年全国2卷文科 21 设函数 1 若 求的单调区间 2 若当时 求的取值范围 理科 设函数 1 若 求的单调区间 2 若当时 求的取值范围 导数 函数 方程 与不等式结合成为压轴题是高考命题的不变题型 命题形式常考常新 共5种命题形式 1是探求函数的单调性 2是证明不等式 不等式恒成立问题 3是讨论方程的根 4是求函数的最值 5是求曲线的切线 题目涉及的函数有 多项式函数 分式函数 无理函数 三角函数 复合函数等 这类题目一般是以导数为工具 以基本函数为基础考查数学思想的运用 函数与导数复习建议三 配备训练题要加强训练的针对性 有针对性配备训练题 本题考查函数的导数 函数极值的判定 二次函数与二次方程等基础知识的的综合运用 三 数列 数列考试内容与要求 文理同 1 数列的概念和简单表示法 1 了解数列的概念和几种简单的表示方法 列表 图象 通项公式 2 了解数列是自变量为正整数的一类特殊函数 2 等差数列 等比数列 1 理解等差数列 等比数列的概念 2 掌握等差数列 等比数列的通项公式与前n项和的公式 3 能在具体的问题情境中识别数列的等差关系或等比关系 并能用等差数列 等比数列的有关知识解决相应的问题 4 了解等差数列与一次函数的关系 等比数列与指数函数的关系 考题的变化 解答题在17题位置 从本质上降低了难度 17题为解三角形或一个简单的数列题 数列题型 1 数列与函数的综合数列是特殊的函数2 数列的观察与推理题成热点 是近年来数学高考命题的新趋势3 等差等比数列的概念 通项公式 前n项和的公式及性质 对基本的运算技能要求比较高 4 Sn与an之间的关系经常是考查的重点 需要灵活应用 递推数列是近年高考命题的一个热点 常考常新 今后数列命题的趋势 对等差数列 等比数列的考查注重基本元思想 强调从等差数列等比数列概念本身出发解决问题 突出在数列函数特征的基础上进一步研究数列问题 数列的综合应用依然是解答题内容之一 淡化数学归纳法 数列复习的建议 1 突出等差数列和等比数列的基本概念和公式 掌握数列中各量之间的基本关系 但训练要控制难度和复杂程度 难度不会大 2 掌握几种一般数列的求通项和求前若干项和的方法3 训练抽象出数列模型的能力 如贷款 人口增长等实际问题抽象出数列模型 数列应用 不可忽视 例1储蓄的利率经济信贷问题 从贷款时 即购买商品时 的角度来看第1个月偿还的x元 贷款时值 四 不等式 不等式选讲 不等式考试要求 文理同 1 一元二次不等式 会从实际问题的情境中抽象出一元二次不等式模型 通过函数图象了解一元二次不等式与相应的二次函数 一元二次方程的联系 会解一元二次不等式 2 二元一次不等式组与简单线性规划问题 从实际情境中抽象出二元一次不等式组 能用平面区域表示二元一次不等式组 会从实际情境中抽象出简单的二元线性规划问题 并能加以解决 3 基本不等式 了解基本不等式的证明过程 会用基本不等式解决简单的最大 小 值问题 不等式选讲考试内容与要求 1 理解绝对值的几何意义 并了解下列不等式成立的几何意义及取等号的条件 1 a b a b 2 a b a c c b 2 会利用绝对值的几何意义求解以下类型的不等式 ax b c ax b c x c x b a 3 通过一些简单问题 了解证明不等式的基本方法 比较法 综合法 分析法 文科没有 柯西不等式 排序不等式 贝努利不等式 平均值不等式 数学归纳法 均没提及 不等式基本要求 1 重视不等式的基本解法 是解决其他知识块的基础 隐性题目 尤其是含参数不等式的解法 包含二次函数 分式不等式 2 重视利用重要不等式解题突出不等式的知识在解决实际问题中的应用不等式的证明过程中的放缩法是历年高考命题的一个热点 放缩中的 度 的把握更能显出解题的真功夫 基本题型 1 与绝对值有关的问题常常与函数 方程 解析几何结合 2010年全国2卷 24 本小题满分10分 选修4 5 不等式选项设函数 画出函数的图像 若不等式 的解集非空 求a的取值范围 2 方程根的讨论问题 例 关于x的方程lg ax 2lg x 1 有解 则a的范围为 方程解的问题转化为不等式组 解 原方程有解对 3 当 2 a 2 4 a2 4a 0即a 0或a 4时 有实解 由 1 2 知a 0 此时 方程的解为 3 线性规划问题应重视 例2一个化肥厂生产甲 乙两种混合肥料 生产1车皮甲种肥料需要的主要原料是磷酸盐4吨 硝酸盐18吨 产生的利润为10000元 生产1车皮乙种肥料需要的主要原料是磷酸盐1吨 硝酸盐15吨 产生的利润为5000元 现有库存磷酸盐10吨 硝酸盐66吨 在此基础上进行生产 请列出条件的数学关系式 并画出其图象 解 设x y分别为计划生甲 乙两种混合肥料的车皮数 于是解 五 复数数系的扩充与复数的引入 1 理解复数的基本概念 理解复数相等的充要条件 2 了解复数的代数表示法及其几何意义 能将代数形式的复数在复平面上用点或向量表示 并能将复平面上的点或向量所对应的复数用代数形式表示 文科没有 3 能进行复数代数形式的四则运算 了解两个具体复数相加 相减的几何意义 2010年全国2卷 2 已知复数 是z的共轭复数 则 A B C 1D 2 六 算法初步与框图 一 算法初步考试内容与要求 文理同 1 了解算法的含义 了解算法的思想 2 理解程序框图的三种基本逻辑结构 顺序结构 条件分支结构 循环结构 3 理解几种基本算法语句的含义 输入语句 输出语句 赋值语句 条件语句 循环语句 二 算法命题规律分析 1 由要求 看算法命题规律 1 本模块的主要目的是使学生体会算法的思想 提高逻辑思维能力 不要将此部分内容简单处理成程序语言学习和程序设计 可知出题重点不是编程 2 有条件的学校 应鼓励学生尽可能上机尝试 可知上机实践不做要求 3 算法思想方法应渗透在高中数学课程其他有关内容中 鼓励学生尽可能地运用算法解决相关问题 出题方向 借算法形式考其他知识是必然 是算法命题的规律 4 中国古代数学中蕴涵了丰富的算法思想 算法出题的素材 a古代数学 b其他单元数学知识 5 在本模块中 学生将结合具体数学实例 体验程序框图在解决问题中的作用 识图 考查方向之二 2 由四年考题看算法命题新趋势 1 难度 中低档难度 题型基本保持稳定07年 会看 图或程序语言 08 会算 数列求和 09年 会想 判断 填出 中间 条件 要求快且准 2010年数列求和问题今后 即要会看 还要 会用 尤其与统计的结合渐成热点 2 由三年考题看算法命题规律 2 内容 a 数列求和 二分法求二次方程近似解 b 与统计结合 与计数原理排列组合结合 与概率结合 实际问题的算法解决 3 题型 主要是选择题 填空题 可以出大题 如2001年上海第22题的数列发生器 2009年广东与统计结合的解答题 算法成为数学及其思想的工具 四年考题举例 山东 辽宁 广东 上海 可做参考 2008年山东 文理同 执行右边的程序框图 若 则输出的 答案 数列求和 求循环次数 2010年全国2卷 7 如果执行右面的框图 输入 则输出的数等于 A B C D 2009年山东 15 执行右边的程序框图 输出的T 答案 30数列求和 求循环次数 2007年宁夏 文理 5 如果执行右面的程序框图 那么输出的 2450 2500 2550 2652点评 给定循环次数 数列求和 2008年宁夏 文理同 右面的程序框图 如果输入三个实数a b c 要求输出这三个数中最大的数 那么在空白的判断框中应该填入下面四个选项中的 A A B C D 点评 比较大小 求最大数 2009年宁夏如果执行右边的程序框图 输入 那么输出的各个数的和等于 A 3 B 3 5 C 4 D 4 5点评 分段函数 条件分支结构及循环结束的理解 2009年辽宁 文理 10 某店一个月的收入和支出总共记录了N个数据其中收入记为正数 支出记为负数 该店用下边的程序框图计算月总收入S和月净盈利V 那么在图中空白的判断框和处理框中 应分别填入下列四个选项中的 C A A 0 V S T B A0 V S T D A 0 V S T点评 识图能力 应用能力 09年广东 文科 11 某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示 图1是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图 则图中判断框应填输出的 因为是统计6名队员的三分球总数所以图中判断框应填 输出的s 09年广东 理科 随机抽取某产品件 测得其长度分别为 则图3所示的程序框图输出的 s表示的样本的数字特征是 平均数 三 算法复习建议 1 抓重点 本章复习重点 程序框图 基本逻辑结构 基本算法语句 1 程序框图的 读 和 补 重点训练 2 循环结构 条件分支结构的 判断 要熟练 三 算法复习建议 2 抓教材 教材上的题必会 尤其算法案例 3 素材要全面 注意算法题的7个主要方面 1 数列求和 2 方程求解尤其二分法运用消元法解二元一次方程组的算法 3 求最大公因数的过程 4 算法案例 5 比较大小等知识点 6 实际应用题 7 统计 框图 1 流程图 1 通过具体实例 进一步认识程序框图 2 通过具体实例 了解工序的流程图 3 能绘制简单实际问题的流程图 体会流程图在解决实际问题中的作用 2 结构图 4 通过实例 了解结构图 5 会运用结构图梳理已学过的知识结构 整理收集到的信息资料 七 计数原理与二项式定理 文科不要求排列组合 计数原理 排列与组合 二项式定理 1 理解分类加法计数原理和分步乘法计数原理 能正确区分 类 和 步 并能利用两个原理解决一些简单的实际问题 2 理解排列的概念及排列数公式 并能利用公式解决一些简单的实际问题 3 理解组合的概念及组合数公式 并能利用公式解决一些简单的实际问题 4 会用二项式定理解决与二项展开式有关的简单问题 2009海南 15 7名志愿者中 安排6人在周六 周日两天参加社区公益活动 若

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论