精品课件浙教版七年级下《三角形的初步认识》复习_第1页
精品课件浙教版七年级下《三角形的初步认识》复习_第2页
精品课件浙教版七年级下《三角形的初步认识》复习_第3页
精品课件浙教版七年级下《三角形的初步认识》复习_第4页
精品课件浙教版七年级下《三角形的初步认识》复习_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020 2 26 1 三角形初步知识复习 2020 2 26 2 三角形 与三角形有关的线段 三角形内角和 三角形的外角 三角形知识结构图 三角形的边 三边关系 高 中线 角平分线 全等三角形 2020 2 26 3 1 三角形的三边关系 1 三角形的任何两边之和大于第三边 知识要点 2 三角形的任何两边之差小于第三边 1 判断三条已知线段a b c能否组成三角形 当a最长 且有b c a时 就可构成三角形 2 确定三角形第三边的取值范围 两边之差 第三边 两边之和 应用 一 三角形的边 角及主要线段 2020 2 26 4 a 三角形的三条高线 或高线所在的直线 交于一点 锐角三角形三条高线交于三角形内部一点 直角三角形三条高线交于直角顶点 钝角三角形三条高线所在的直线交于三角形外部一点 b 三角形的三条中线交于三角形内部一点 c 三角形的三条角平分线交于三角形内部一点 知识要点 2 三角形的三线 2020 2 26 5 4 三角形的内角和 180 5 三角形的外角 三角形一边与另一边的延长线组成的角 三角形的外角和 360 三角形的一个外角等于与它不相邻的两个内角的和 三角形的一个外角大于与它不相邻的任何一个内角 3 三角形具有稳定性 而四边形没有稳定性 6 三角形的内角与外角之间的关系 2020 2 26 6 请问 一个三角形最多有几个钝角 几个直角 几个锐角 二 三角形分类 三个角都是有一个角是有一个角是锐角直角钝角 2020 2 26 7 解 由三角形两边之和大于第三边 两边之差小于第三边得 8 3 a 8 3 所以5 a 11又因为第三边长为奇数 所以第三条边长为7cm或9cm 例1 已知两条线段的长分别是3cm 8cm 要想拼成一个三角形 且第三条线段a的长为奇数 问第三条线段应取多少长 典型例题 2020 2 26 8 三角形的两边长分别是3和5 第三边a的取值范围 A 2 a 8B 2 a 8C 2 a 8D 2 a 8 基础训练 C 2020 2 26 9 能把一个三角形分成面积相等的两部分是三角形的 A 中线B 高线C 角平分线D 过一边的中点且和这条边垂直的直线 基础训练 A 2020 2 26 10 在 ABC中 若 A 54 B 36 则 ABC是 A 锐角三角形B 钝角三角形C 直角三角形D 等腰三角形 基础训练 C 直角三角形的两锐角互余 2020 2 26 11 4 下列各组数中不可能是一个三角形的边长的是 A 5 12 13B 5 7 7C 5 7 12D 101 102 103 5 已知一个三角形的三条高的交点不在这个三角形的内部 则这个三角形 A 必定是钝角三角形B 必定是直角三角形C 必定是锐角三角形D 不可能是锐角三角形 C D 2020 2 26 12 6 的三个不相邻外角的比为 则 的三个内角的度数分别为 2020 2 26 13 7 如图 在 ABC中 B 44 C 72 AD是 ABC的角平分线 1 求 BAC的度数 2 求 ADC的度数 解 1 B C BAC 180 BAC 180 44 72 64 2 AD是 ABC的角平分线 BAD 1 2 BAC 32 ADC是 ABD的外角 ADC B BAD 44 32 76 2020 2 26 14 例2 如图 在 ABC中 已知AC BE CAD的角平分线交BC的延长线于点E 若 B 50 求 AEB的度数 若 B 试用 的代数式表示 AEB的度数 解 1 AC BE ACB ACE 90 CAD是ABC的外角 CAD B ACB 50 90 140 AE平分 CAD CAE 1 2 CAD 70 AEB 180 90 70 20 2 分析 CAD 90 CAE 45 1 2 AEB 90 45 1 2 45 1 2 2020 2 26 15 如图 BE CF是 ABC的角平分线 A 40 则 BOC 度 A 70B 110C 120D 140 巩固练习 B 如图 已知 ABC中 B 45 C 75 AD是BC边上的高 AE是 BAC的平分线 DAE 度 A 15B 30C 45D 25 A 2020 2 26 16 B 3 任何一个三角形的三个内角中至少有 A 一个角大于60 B 两个锐角C 一个钝角D 一个直角 2020 2 26 17 4 如图 5条直线相交 得 1 2 3 4 5 6 7 已知 5 20 求 1 2 3 4的度数 2020 2 26 18 5 图中三角形的个数是 A 3个B 4个C 5个D 6个 E A 当增加n条线的时候 有多少个三角形 2020 2 26 19 知识应用 2020 2 26 20 7 如图 AD平分 BAC 交BC于点D ADB 105 ACB 65 CE是AB边上的高 求 BAC BCE的度数 解 ADB是 ADC的一个外角 ADB ACB DAC DAC 105 65 40 AD平分 BAC BAC 2 DAC 80 2 BAC B ACB 180 B 180 BAC ACB 180 80 65 35 BCE 90 35 55 2020 2 26 21 三 全等三角形 知识结构 全等三角形 定义 能够的两个三角形 对应元素 对应 对应 对应 性质 全等三角形的对应边 判定 完全重合 边 角 相等 对应角相等 SSS SAS ASA AAS 顶点 2020 2 26 22 SSS SAS ASA AAS 两个三角形全等的判定方法 2020 2 26 23 1 如图AD BC 要判定 ABC CDA 还需要的条件是 基础训练 或 2020 2 26 24 2 如图 AM AN BM BN说明 AMB ANB的理由 2020 2 26 25 3 如图 已知AB AD AC AE 1 2 求证 BC DE 2020 2 26 26 1 要说明两个三角形全等 要结合题目的条件和结论 选择恰当的判定方法2 全等三角形 是说明两条线段或两个角相等的重要方法之一 说明时 要观察待说明的线段或角 在哪两个可能全等的三角形中 分析要说明两个三角形全等 已有什么条件 还缺什么条件 有公共边的 公共边一般是对应边 有公共角的 公共角一般是对应角 有对顶角 对顶角一般是对应角 方法总结 2020 2 26 27 4 如图 1 2 AB CD AC与BD相交于点O 则图中必定全等的三角形有 A 2对B 3对C 4对D 6对 C 2020 2 26 28 四 线段中垂线与角平分线的性质 线段垂直平分线的性质 线段的垂直平分线上的点到线段两端点的距离相等 几何表述 是线段AB的中垂线 点C在上 CA CB 2020 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论