第18章小结与复习导学案.doc_第1页
第18章小结与复习导学案.doc_第2页
第18章小结与复习导学案.doc_第3页
第18章小结与复习导学案.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新人教版八年级数学下学期导学案 课题第18章小结与复习课型复习课年级八年级单元第18单元课时第13课时授课人王学锋学习目标1理解平行四边形与各种特殊平行四边形的区别。2梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。3在回顾与思考的过程中体会特殊与一般的关系,进一步体会类比、转化等一些重要的数学思想。学习重点平行四边形、矩形、菱形、正方形的知识体系及应用方法,灵活运用。学习难点灵活应用所学知识解决有关问题创 设情境,呈现目标互 动 探 究 合 作 归纳知识回顾1.平行四边形与特殊的平行四边形的关系: 矩形 有一个角是直角, 平行四边形 且有一组邻边相等 正方形 菱形用集合表示为: 2.平行四边形与特殊的平行四边形的性质与判定:平行四边形矩形菱形正方形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定两组对边分别平行;两组对边分别相等;一组对边平行且相等;两组对角分别相等;两条对角线互相平分.有三个角是直角;是平行四边形且有一个角是直角;是平行四边形且两条对角线相等.四边相等的四边形;是平行四边形且有一组邻边相等;是平行四边形且两条对角线互相垂直.是矩形,且有一组邻边相等;是菱形,且有一个角是直角.对称性只是中心对称图形既是轴对称图形,又是中心对称图形面积S= ahS=abS=(d是对角线长度)S= a23.三角形中位线定理:三角形任意两边中点连线是第三边的一半。班级展示类型一、平行四边形的性质与判定例1. 如图,ABCD为平行四边形,E、F分别为AB、CD的中点,求证:AECF也是平行四边形;连接BD,分别交CE、AF于G、H,求证:BG=DH;连接CH、AG,则AGCH也是平行四边形吗?例2. 如图,已知在平行四边形ABCD 中,AEBC于E,AFCD于F,若EAF60 o,CE=3cm,FC=1cm,求AB、BC的长及ABCD面积.类型二、矩形、菱形的性质与判定例3. 如图,在矩形ABCD中,对角线交于点O,DE平分ADC,AOB60,则COE 例4. 如图,矩形ABCD中的长AB8,宽AD5,沿过BD的中点O的直线对折,使B与D点重合,求证:BEDF为菱形,并求折痕EF的长类型三、正方形的性质与判定例6. 如图,已知E、F分别是正方形ABCD的边BC、CD上的点,AE、AF分别与对角线BD相交于M、N,若EAF=50,则CME+CNF= 类型四、与三角形中位线定理相关的问题例7. 如图,BD=AC,M、N分别为AD、BC的中点,AC、BD交于E,MN与BD、AC分别交于点F、G,求证:EF=EG.课时小结这节课你学到了什么,师生共同归纳小结。测评反馈1在菱形ABCD中,AC、BD相交于点O,DEBC于点E,且DEOC,OD2,则AC 2如图,正方形OMNP的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD、OMNP的边长都是acm,则图中重合部分的面积是 cm23.如图,设M、N分别是正方形ABCD的边AB、AD的中点,MD与NC相交于点P,若PCD的面积是S,则四边形AMPN的面积是 .4.如图,M为边长为2的正方形ABCD对角线上一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论