外文翻译--六自由度上肢康复仪器【中英文文献译文】
收藏
资源目录
压缩包内文档预览:
编号:51223870
类型:共享资源
大小:1.70MB
格式:ZIP
上传时间:2020-02-26
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
12
积分
- 关 键 词:
-
中英文文献译文
外文
翻译
自由度
上肢
康复
仪器
中英文
文献
译文
- 资源描述:
-
外文翻译--六自由度上肢康复仪器【中英文文献译文】,中英文文献译文,外文,翻译,自由度,上肢,康复,仪器,中英文,文献,译文
- 内容简介:
-
第 10 页 共 10 页编号: 外文翻译(译文)学 院: 专 业: 学生姓名: 学 号: 指导教师单位: 姓 名: 职 称: 六自由度上肢康复仪器摘要:新的训练方法和练习使上肢康复机器人的虚拟现实技术应用成为可能。该技术可以定量评价和提高效果的稳定性。本文涉及的6自由度康复机急诊驱动器的发展,其包括上肢及手腕的使用。指数条款,康复体系,上肢康复,腕关节康复机器人,ER驱动器一 介绍上肢的运动,如饮食和操作电器非常的复杂、多样且必不可少的日常活动。因此, 养老是重要的问题,锻炼身体以保持他们的上肢功能。此外,还有很多许多造成中风,瘫痪的病人的 例如,在日本每年两百五十万元人都有中风,其中不少是瘫痪。人类的大脑有着一个非凡能力及可塑性程度(自组织),学习能力,开放的运动康复的可能性。因此,神经康复中风患者是有效的。物理治疗包括一对一的互动帮助和鼓励患者通过重复练习治疗。机器人治疗师消除了不必要的消耗,定量治疗及监测病人的进展,并确保规划治疗方案的一致性。社会中老龄化比例近年来呈现增长的趋势,他们的身体每况愈下已成为许多国家的社会问题。早期发现他们身体功能恶化,所以要减少老年人的长期卧床而且还要保障护理以及足够的康复训练,这也需要全社会老年人积极参与。使用适用于机器人技术、虚拟现实设备,运用新的训练方法使康复变得可能。定量反馈一台计算机可以提高定性的评估训练培训效果。因此,一些康复上肢系统发展运用这些技术然而,他们中的大多数人申请培训二维平面,但是许多日常生活的动作,都要在一个手臂垂直的方向上移动。因此,使用系统s练习似乎为此类培训更有效果。虽然M使用彪马-560方式IME系统和斯坦福大学能能有三个层面的训练,美洲狮机器人最早使用起源于560年工业,残疾人年龄也可能不能保持足够的安全培训这项工作是在经济上支持新能源及产业技术,贸易部和日本的产业组织发展等人大阪大学开发了两种类型的2自由度显示系统,使用ER驱动器4 56,并已进行了上肢临床康复的试验 6。在这些系统中,雌激素受体驱动器确保可以机械安全。然后,大阪大学及旭化成集团加入NEDO技术开发机构项目5年,并在此基础上制定了的3-D上肢康复器具知识5。然后,兵库医科大学进行了临床评价。在5年NEDO技术开发机构开发康复项目的系统,手腕的康复驱动机的驱动器和自由旋转。因此,适当的上肢手腕康复包括在内的无法达到的。克雷布斯,等。麻省理工学院开发的机器人手腕8,然后已开发的系统,包括一个5自由度康复麻省理工学院马努斯手腕机器人9。在本文中,我们提出一个六自由度的发展趋势,包括上肢手腕使用,在这个项目中康复机的ER执行器将会实际应用到下一代机器人上。2005年国际博览会在日本的爱知县举行,届时这台机器将被展出。图1 电流变传动器的概念图图2多圆柱型的ER执行器输出双旋转方向扭矩 图3 多圆柱型的ER离合器电流变流体是一种流体,其流变特性可以通过施加电场改变10。图1所示ER流体驱动器的概念图。“ER执行器是由一个ER离合器,驱动电机和减少齿轮单元组成的。电机的转速保持恒定。由外加电场控制的ER执行器的扭矩的输出。 截面图的电流变传动器可给予在扭矩方向上的输出。输入旋转零件图(第一部分和第二部分)拥有圆筒结构。输入旋转部分由一个电动机通过齿轮顺时针旋转,输入第二部分是通过同一系列电机齿轮逆时针旋转。输入扭矩传递是通过输出轴旋转的充满颗粒型电流变流体圆柱部分的旋转圆筒。两输入轴和输出轴缸作为电极,输出扭矩是由电气控制电极之间的应用。该输出轴是由铝合金气缸以降低转动惯量。图3显示离合器圆柱结构。使用ER流体的执行机构是有效的人机共存,上肢康复系统和机电一体化系统一样4。图4显示了一个概念图人机共存,ER流体的执行机构使用机电一体化(HMCM)的系统。人机共存是ER执行器在应用程序的优点,机电一体化(HMCM)的系统从操作的特点:(A)由于ER执行器具有良好的驱动器,驾驶性能背面,所以操作者可以很容易地从它的运作机电一体化系统。(B)操作其最终的效应就是机电一体化系统,HMCM系统可以使输入气缸的转速快速移动到ER流体的执行机构二 从系统表现显示(一)快速部队响应特性源于对ER驱动器的低惯性属性及快速电流变流体的响应,充分的介绍高保真的可能。(二)可以安全地实现部队显示系统能力的介绍图7 被动显示系统 图8 康复仿真图9手动控制仿真 图10 图1原型图11 运动链接2图12 运动链接3三 利用电流变液康复和显示系统古庄重点实验室大阪大学自1993就已经发展康复系统和显示系统ER执行器的使用图5显示了二自由度康复系统,在试图中展现了ER流体的执行机构。康复培训系统主要是安装在一个医院测试目的。13例自愿参加多个上肢的物理性能实验评价和康复训练患者由于脊髓受损或堵塞大脑动脉手臂麻痹。图6显示了二自由度康复系统,应用ER流体的执行机构的展示。 图7显示了一个被动的力,使用ER制动器14。使用刹车呈现阻力,被动的力显示运营商的力量是相当安全1415。 古庄实验研究室被动恢复上肢显示 图8显示了上肢康复系统使用ER驱动器3-D展示 7。NEDO技术开发机构开发EMUL项目5年,并为中风患者使用评估 16,Motricity公司指数17,现阶段18在临床试验中。好结果获得的评价。 三自由度康复系统不能包括实现上肢手腕康复,自由旋转手腕所示图9。因此,我们开发了6自由度机器使用ER执行机构,为明年新一代机器人的实际中得以应用。在本章中我们提出的发展第一样机采用伺服电机。图10显示了第一样机的图纸,本机制的原型如下。1)手臂部分具有2自由度,水平旋转和垂直运动。图13 手腕部和第一原型的链接3图14 链接3的侧视图2)执行器及皮带滑轮减少了系统的手臂运动,以减少惯性运动部件。垂直旋转部分采用并行链路机制组成的链接2(1)链接2(2)如图。10。这使得在所有的反平衡重量的重力效应补偿(见图11)。 3)链接-3通过水平面的空间连杆机构驱动旋转如图12所示4)手腕的执行器安装在腕关节链接1上,以减少运动部件的惯性。电机的力矩传输 使用的手腕万向节,传动轴和导线的滑轮系统(见图13)。5)图14显示了手腕线滑轮系统。图15分别显示侧倾,俯仰,偏航,电线的途径。6)手腕的横摇导致“A”部分和“B”的部分之间相对转动如图14所示。导致此相对转动,为驾驶电线,俯仰和偏航扭曲运动 在图16所示。为了减少线长度的变化引起的本卷的异议,这些电线都尽可能放在轴的附近。四 六自由度康复机图17显示康复机的照片。该系统由ER驱动器驱动。图18显示驱动器手臂运动的手柄和手腕机制被改为悬臂式,从两方支持型。图19显示了手柄和手腕机制的抓地力。图20显示总系统的图片。重力是悬臂式握柄必要的组成,如图21所示。何时我们采取这样的机制,体重靠近手柄增加,并表现为力量和显示系统安全性是人机共存系统的安全性能变质的。所以,我们把重量的平衡,在急诊室器盒,如图22所示。我们正在开发上肢康复训练软件,包括手腕的灵巧需要。图23,图24和图25显示了培训软件的一部分。 图22 重量平衡的安排 图23 虚拟撞击图24 虚拟浇洒器 图25 虚拟擦五 对安全的考虑一个上肢康复系统具有很大的工作区域,可以被视为一种机器人。在这样一种人机共存的系统中,操作员必须接触或接近机器人,从而确保系统的安全是必要的,使机器人能够操作者更安全19。在工业机器人中,操作员可以不访问避免危险条件除教学机器人。图26显示了人机共存结构安全的机器人。ER的驱动器有以下安全优缺点。(一)ER的驱动器的输出轴的最大行驶速度 由输入轴的转速对ER离合器限制。因此,当转速输入轴缓慢,HMCM系统保证ER驱动器运营商的安全。(二)输出部分的惯性,可以做得非常小。因此,在意外事故的情况下,可以减少冲击力执行机构的惯性由于人机共存的国际安全标准尚未建立,我们没有别的选择 除了ISO标准和国内标准使用机器的工作接近人类(见表一)。发达国家康复系统可以保证这些参数标准,我国对ER驱动器的使用和机械设计如下:1(一)和(二)表是比较理想转速制定下气体的运动情况2(三)一只60瓦电机驱动器输入旋转缸满足使用的要求。3 设计风险减少,从而实现了每个关节机械限制,机械重力补偿和使用的驱动器。 图26 为确保人机结构安全第六 结论我们已经制定了一个6自由度上肢康复机 包括手腕如下。1)第一个原型机采用伺服电机作为原动力从而使整个系统能够在控制中进行康复运动。表1国际,国内安全标准2)六自由度康复机主要包括使用ER驱动器以及在手腕和四肢已开发的基础上从样机的开发获得的知识。3)我们正在制定康复上层软件目前包括手腕和四肢。 Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Canada July 2005 0-7803-9044-X/05/$20.00 2005 IEEEA 6DOF Rehabilitation Machine for Upper Limbsincluding Wrists Using ER ActuatorsJunji Furusho, Chengqiu Liand Yuhei YamaguchiGraduate school of EngineeringOsaka University2-1 Yamadaoka, Suita, Osaka, Japanfurushomech.eng.osaka-u.ac.jpShinya Kimura, Kenji NakayamaTakaya Katuragi and Takamichi OguriGraduate school of EngineeringOsaka University2-1 Yamadaoka, Suita, Osaka, JapanUshio Ryu and Sadami SuzukiAsahi Kasei Engineering Co., Ltd.Kohnan 4-chome, Minatoku, Tokyo, JapanAkio InoueER tec Co., Ltd.2-1-31, Sakuragaoka, Minoo, Osaka, JapanAbstractNew training methods and exercises for upperlimbs rehabilitation are made possible by application of roboticsand virtual reality technology. The technologies can makequantitative evaluations and enhance the qualitative effect oftraining. This paper deals with the development of a 6-DOFrehabilitation machine for upper limbs including wrists usingER actuators ”Robotherapist”.Index TermsRehabilitation System, Upper Limb Rehabili-tation, Wrist Rehabilitation, Robotics, ER ActuatorI. INTRODUCTIONMovements of the upper limbs, such as eating and oper-ating appliances are complicated, various and indispensablefor daily activities. It therefore is important for the aged toexercise to keep their upper limb function. Moreover, thereare many patients of paralysis caused by stroke. For example,in Japan more than two hundred and fifty thousand peoplehave stroke every year, and many of them are paralyzed.The human brain is capable of an extraordinary degree ofplasticity (self-organization), enabling learning, and leavingopen the possibility for motor recovery1. Therefore, neuro-rehabilitation for stroke-patients is effective.The physical therapy involves one-on-one interaction witha therapist who assists and encourages the patient througha number of repetitive exercises. A robotic therapist caneliminate unnecessary exertion by the therapist, quantitativelymonitor patient progress, and ensure consistency in planninga therapy program.The percentage of aged persons in society and their numberare increasing, and their physical deterioration has becomea social problem in many countries. Early detection offunction deterioration and sufficient rehabilitation training arenecessary, not only to decrease the numbers of aged who arebedridden or need nursing care, but also to enable the agedto take an active part in society.Using apparatus that applies robotic technology and vir-tual reality makes new training methods and exercises inThis work is supported by New Energy and Industrial TechnologyDevelopment Organization (NEDO) under the Ministry of Economy, Tradeand Industry of Japanrehabilitation possible2, 3. Feeding back the quantitativeevaluations to the training by a computer can enhance thequalitative effect of training. Therefore, some rehabilitationsystems using these technologies for upper limbs have beendeveloped. However, most of them apply training within atwo-dimensional horizontal plane. Many movements, how-ever, in daily activities need to move arms in a verticaldirection. A system therefore that enables exercise in three-dimensions would seem to be more effective for such train-ing. Although the MIME system 3 using PUMA-560 byVA and Stanford Univ. can give training in three-dimensions,the PUMA-560 is a robot originally developed for industrialuse and may not be sufficiently safe to train the aged and/ordisabled.Furusho, et al. of Osaka University developed two typesof 2-DOF force display systems using ER actuators4, 5,6, and have carried out clinical trials of rehabilitation forupper limbs 6. In these systems, ER actuators ensure themechanical safety. Then, Osaka University and Asahi KaseiGroup joined the 5-year NEDO Project and developed a3-D rehabilitation apparatus for upper limbs based on thisknowledge5. Then, we conducted the clinical evaluation atHyogo Medical college7.In the rehabilitation system developed in the 5-year NEDOProject, the wrist of the rehabilitation machine is not drivenby actuators and rotate freely. So, the proper rehabilitation forupper limbs including wrists can not be attained. Krebs, et al.of MIT developed a wrist robot8 for rehabilitation, and thenhave developed a 5-DOF rehabilitation system consisting ofMIT-MANUS2 and this wrist robot9.In this paper, we present the development of a 6-DOFrehabilitation machine for upper limbs including wrists usingER actuators in a project for the Practical Application ofNext Generation Robots. This machine will be exhibited atthe 2005 International Exposition held in Aichi Prefecture,Japan.1033Input RotationalCylinderER FluidElectricFieldMotorOutput RotationalCylinderOutput TorqueInput TorqueFig. 1.Conceptual Illustration of ER ActuatorFig. 2.Multi-cylindrical-type ERActuator with Output Torque inBoth-Rotational-DirectionsFig. 3.Multi-cylindrical-type ERClutchII. ER ACTUATORSER fluid is a fluid whose rheological properties can bechanged by applying an electrical field10. Fig. 1 showsthe conceptual illustration of an ER fluid actuator. TheER actuator is composed of an ER clutch and its drivemechanism consisting of a motor and a reduction-gear-unit.The rotational speed of the motor is kept constant. The outputtorque of ER actuator is controlled by the applied electricfield.The sectional view of ER actuator which is capable ofproducing output torque in both directions are given in Fig.2.The input rotational parts of Fig.2 (Part I and Part II) possesscylindrical structure. The input rotational PartI is rotatedclockwise through a gear by an electric motor, and the inputrotational Part II is rotated counterclockwise through a seriesof gears by the same motor. The input torque is transferredto the rotating cylindrical section of the output axis via theparticle-type ER fluid filled in the rotating cylinder. Boththe input axis cylinders and the output axis cylinder serve aselectrodes, and output torque is controlled by the electric fieldapplied between the electrodes. The output cylinder is madeof aluminum alloy in order to reduce the moment of inertiaof the output axis. Fig.3 shows a ER clutch with cylindricalstructure.An actuator using ER fluid is effective for human-coexistent mechatronics systems like rehabilitation systemsFig. 4.Human-Machine-Coesistent-Mechatronics (HMCM) System usingER ActuatorsFig. 5.Rehabilitation SystemNIOH-1Fig. 6.Rehabilitation SystemNIOH-2for upper limbs 4. Fig. 4 shows a conceptual illustration ofHuman-Machine-Coexistent-Mechatronics (HMCM) Systemusing ER Actuators. Merits of ER actuators in applications toHuman-Machine-Coexistent-Mechatronics (HMCM) systemare as follows:1) From the Viewpoints of the Characteristics of Opera-tion:(a) Since ER actuators have good back-drivability, theoperator can easily operate HMCM system from itsend-effector.(b) When HMCM system is driven by the operator fromits end-effector, HMCM system can be moved quicklyover the rotational speed of the input cylinder of theER clutch.2) From the Viewpoints of Performances in Force DisplaySystem:(a) Quick force response property originated from thelow inertia property of ER actuator and the rapidresponse of ER fluid make the force presentation withhigh fidelity possible.(b) Force display systems with large-force presentationability can be realized safely.1034Fig. 7.Passive-type Force Display SystemFig. 8.EMUL in RehabilitationIII. REHABILITATION ANDFORCEDISPLAYSYSTEMSUSINGER FLUIDSFurusho Lab. of Osaka University has been developingrehabilitation systems and force display systems using ERfluids since 199311.Fig. 5 shows the 2-DOF rehabilitation systems ”NIHO-1”using ER actuators shown in Fig. 24, 12. The rehabilita-tion training system was installed in a hospital for testingpurpose. 13 patients volunteered to participate in severalexperiments for evaluation of upper limbs physical capabilityand for rehabilitation training. The patients suffered fromarm paralysis due to a damaged spinal cord or clogged brainartery. Fig. 6 shows the 2-DOF rehabilitation system ”NIHO-2” using ER actuators shown in Fig. 35, 13.Fig. 7 shows a passive force display using ER brakes14.Passive force displays using brakes to present resistance forceagainst operators force are quite safe14, 15.Furusho Lab. is going to examine a passive force displayon rehabilitation for upper limbs.Fig. 8 shows the 3-D rehabilitation system for upper limbsusing ER actuators (EMUL)7. EMUL was developed in a5-year NEDO project, and evaluated for stroke-patients byusing Fugel-Meyer assessment16, Motricity Index17, andUeda Stage18 in the clinical testing. The good results wereobtained in the evaluation.Fig. 9.Hand-grip of EMULFig. 10.Drawing of the 1st PrototypeFig. 11.Movement of Link 2IV. THE1STPROTOTYPE OF6-DOF REHABILITATIONSYSTEMFig. 12.Movement of Link 3In the 3-DOF rehabilitation system (EMUL), the properrehabilitation for upper limbs including wrists can not beattained since EMUL has the free-rotation wrist as shown inFig. 9. So, we have developed a 6-DOF machine using ERactuators in a project for the Practical Application of NextGeneration Robots. In this chapter, we present the develop-ment of the 1st prototype machine using servo motors.Fig. 10 shows drawings of the 1st prototype machine. Themechanism of the prototype machine is as in the following.1) It has 2-DOF the horizontal rotation and 1-DOF for thevertical movement in the arm part.1035Fig. 13.Wrist Part and Link 3 of the 1st PrototypeFig. 14.Side View of the Link 32) Actuators and belt-pulley-reduction systems for the armmotion are set on the base in order to reduce the inertiaof the moving parts. The vertical rotation part adoptsa parallel link mechanism consisting of link 2(1) andlink 2(2) as shown in Fig. 10. This makes the gravity-effect compensation by counter-balance weight in allposture possible (see Fig. 11).3) Link-3 driven by the spatial link mechanism rotates inthe horizontal plane as shown in Fig. 12.4) Actuators for the wrist motion are mounted on link1 in order to reduce the inertia of the moving parts.The motor torques are transmitted to the wrist by usinguniversal joints, driving shafts, and wire-pulley system(see Fig. 13).5) Fig. 14 shows the wire-pulley system for the wrist. Fig.15 shows the pathways of wires for roll, pitch, yaw,(a) Roll(b) PitchFig. 15.Wires for Roll, Pitch andYaw Rotation(c) YawFig. 16.Twist of Wire-ropeFig. 17.The 6-DOF Rehabilita-tion System ”Robotherapist”Fig. 18.ER Actuatorrespectively.6) The roll motion of the wrist causes the relative rotationbetween the part A and the part B of Fig. 14. As theresult of this relative rotation, the driving wires for thepitch and yaw motions are twisted as shown in Fig.16.In order to reduce the variation of wire length causedby this roll motion, these wires are placed near the rollaxis as possible.V. 6-DOF REHABILITATIONMACHINE”ROBOTHERAPIST”Fig. 17 shows a photo of ”Robotherapist”. This systemis driven by ER actuators. Fig. 18 shows the ER actuatorfor the arm motion. The mechanism of the grip handle andthe wrist was changed to the cantilever-type from the both-Fig. 19.Wrist Part of ”Robotherapist”1036Fig. 20.Composition of 6-DOF Rehabilitation SystemFig. 21.Construction of Wrist Partside-support-type. Fig. 19 shows the mechanism of the griphandle and the wrist. Fig. 20 shows the conceptual illustrationof the total system. The gravity composition is required inthe cantilever-type grip handle, as shown in Fig. 21. Whenwe adopt such mechanism, the weight near the grip handleincreases, and the performance as a force display system andthe safety property as Human-Machine-Coexistent-system aredeteriorated. So, we placed the balance weight in the ERactuator box as shown in Fig. 22.We are developing rehabilitation training software whichrequires the dexterity of upper limbs including wrists. Fig. 23,Fig. 24 and Fig. 25 show a part of training software.Fig. 22.Arrangement of balanceweightFig. 23.Virtual HittingFig. 24.Virtual SprinkleFig. 25.Virtua WipeVI. CONSIDERATION ABOUTSAFETYA rehabilitation system for upper limbs which has largeworking area can be regarded as a kind of robots. In such ahuman-coexistent robot system where an operator must bein contact with or close to the robot, the safety-securingsystem is necessary in order that an operator can use therobot safely19. In industrial robots, an operator cannotaccess a robot except for teaching in order to avoid hazardousconditions. Fig.26 shows the structure of safety in human-coexistent robots.ER actuators have the following merits from the viewpointof safety.(a) The maximum driving speed of the output shaft of the ERactuator is restricted by the rotational speed of the input shaftof the ER clutch. Therefore, when the rotational speed of theinput shaft is set slow, HMCM systems using ER actuatorsare safe for operators.(b) The inertia of the output part can be made very small.So, in the case of unexpected accidents, the impact forcecaused by the inertia of the actuator can be reduced.Since International Safety Standards for human-coexistentrobots have not been established yet, we have no other choicebut to use the ISO and domestic standards for machinesworking close to human beings (see Table I). The developedrehabilitation system can assure these standards of Table Iby the usage of ER actuators and the mechanical design asfollows:1 The items (a) and (b) of Table I are satisfied by settingthe rotational speed of the input cylinder slow.2 The item (c) is satisfied by using a 60-watt motor forthe drive of the input rotational cylinder.3 Risk Reduction by Design (item (d) is realized bymechanical limitation of each joint, mechanical gravity-compensation and the usage of ER actuators.Safety from the viewpoint of InformationSafety from the viewpoint of Control Safety from the viewpoint of Mechanism and ActuatorsSafety from the viewpoint of Operation ConditionFig. 26.Structure for Securing Safety in Human-Coexistent RobotsVII. CONCLUSIONSWe have developed a 6-DOF rehabilitation machine forupper limbs including wrists as in the following.1) The 1st prototype machine using servo motors wasdeveloped for the purpose of confirming a novel mech-anism for the rehabilitation system.1037TABLE IINTERNATIONAL ANDDOMESTICSAFETYSTANDARDS(a) End-effector Speed is lessthan 0.25 m/sISO10218:Manipulating industrial robotsSafety(b) Low Energy PropertyISO14121:Safety of machineryPrinciples of risk as-sessment(c) Actuator Power is less than80 WJAPAN, JIS B 8433, 1983.:General Code for Safety ofIndustrial Robots(d) Risk Reduction by DesignISO12100:Safety of machineryBasic conceptsCgen-eral principles for design2) Then, the 6-DOF rehabilitation machine for upperlimbs including wrists using ER actuators ”Robothera-pist” has been developed based on the knowledge ob-tained from the development of the prototype machine.3) we are developing the rehabilitation software upperlimbs including wrists at present.REFERENCES1 Carr, Janet, and Roberta Shepherd, Neurological Rehabilitation: Opti-mizing Motor Performance, Butterworth-Heinemann, Boston, 1998.2 H. I. Krebs, B. T. Volpe, M. L. Aisen, and n. Hogan, ”Increasing produc-tivity and quality of care : Robot-aided neuro rehabilitation,”Jurnal ofRehabilitation reseach and development, vol. 37, no.6,pp.639652,2000.3 C. G. Burgar, P.S.Lum, P. C. Shor, and H. M. V. der Loos, ”Devel-opment of robots for rehabilitation therapy : The palo alto va/stanfordexperience,” Jurnal of Rehabilitation Reseach and Development, vol.37, no.6, pp.663673, 2000.4 J. Furusho and M. Sakaguchi, ”New actuators using ER fluid and theirapplications to force disply devices in virtual reality and medical treat-ments,” Proc. of the International Conferance on Electro-RheologicalFluids, Magneto-Rheological Suspensions and their Applications, 755-763, 1997 (Int. J. of modern physics B, vol.13, no. 14,15&16, pp.2151-2159, 1999).5 J. Furusho, K. Koyanagi, U. Ryu, A. Inoue, and K. Oda, ”Developmentof rehabilitation robot system with functional fluid devices for upperlimbs,”International Journal of Human-friendly Welfare Robotic System,vol. 32, no .6, pp.23-27, 2003.6 J. Furusho, ”Mechatronics system using ER fluids (review pa
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。