全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题:2.4.2平面向量数量积的坐标表示、模、夹角教学目的:要求学生掌握平面向量数量积的坐标表示掌握向量垂直的坐标表示的充要条件能用所学知识解决有关综合问题教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1两个非零向量夹角的概念已知非零向量与,作,则ab()叫与的夹角.2平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量|cosq叫与的数量积,记作,即有 = |cosq,().并规定与任何向量的数量积为0 3向量的数量积的几何意义:数量积等于的长度与在方向上投影|cosq的乘积二、讲解新课:平面两向量数量积的坐标表示已知两个非零向量,试用和的坐标表示设是轴上的单位向量,是轴上的单位向量,那么,所以又,所以这就是说:两个向量的数量积等于它们对应坐标的乘积的和 即2.平面内两点间的距离公式(1)设,则或(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)3.向量垂直的判定设,则4.两向量夹角的余弦() cosq =三、讲解范例:例1 设 = (5, -7), = (-6, -4),求解: = 5(-6) + (-7)(-4) = -30 + 28 = -2例2 已知a(1, 2),b(2, 3),c(-2, 5),求证:abc是直角三角形证明:=(2-1, 3-2) = (1, 1), = (-2-1, 5-2) = (-3, 3)=1(-3) + 13 = 0 abc是直角三角形例3 已知 = (3, -1), = (1, 2),求满足 = 9与 = -4的向量 解:设= (t, s), 由 = (2, -3)例4 已知(,),(,),则与的夹角是多少?分析:为求与夹角,需先求及,再结合夹角的范围确定其值.解:由(,),(,)有(),记与的夹角为,则cos又,评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和a (5, 2)为顶点作等腰直角abc,使b = 90,求点b和向量的坐标解:设b点坐标(x, y),则= (x, y),= (x-5, y-2) x(x-5) + y(y-2) = 0即:x2 + y2 -5x - 2y = 0又| = | x2 + y2 = (x-5)2 + (y-2)2即:10x + 4y = 29由点坐标或;=或 例6 在abc中,=(2, 3),=(1, k),且abc的一个内角为直角, 求k值解:当 = 90时,= 0,21 +3k = 0 k = 当 = 90时,= 0,=-= (1-2, k-3) = (-1, k-3)2(-1) +3(k-3) = 0 k = 当c= 90时,= 0,-1 + k(k-3) = 0 k = 四、课
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025山东发展绿色清洁能源有限公司招聘5人笔试历年常考点试题专练附带答案详解试卷3套
- 棚改安置房项目节能评估报告
- 供热系统热效率提升技术方案
- 肥乡公务员考试试题及答案
- 鄂州市公务员考试路线试题及答案
- 东丽公务员考试国考试题及答案
- 2025年及未来5年市场数据中国MBS树脂行业市场供需格局及投资规划建议报告
- 研学基地安全管理方案
- 轨道交通延伸段工程技术方案
- 600MWh独立储能电站项目环境影响报告书
- 食材配送知识培训课件
- 非煤矿山应急知识培训课件
- 装饰工程计价培训
- 2025年户外探险领队户外安全风险管理方案试卷及答案解析
- 手术室质量控制与管理
- (2025年标准)晚辅协议书
- 泵闸维修方案(3篇)
- 玫瑰痤疮个案护理
- 木质素化学改性-第1篇-洞察及研究
- 二十四节气讲座
- 社会情感学习本土化-洞察及研究
评论
0/150
提交评论