1.4生活中的优化问题导数的应用.ppt_第1页
1.4生活中的优化问题导数的应用.ppt_第2页
1.4生活中的优化问题导数的应用.ppt_第3页
1.4生活中的优化问题导数的应用.ppt_第4页
1.4生活中的优化问题导数的应用.ppt_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

导数的应用 知识与技能 1 利用导数研究函数的切线 单调性 极大 小 值以及函数在连续区间 a b 上的最大 小 值 2 利用导数求解一些实际问题的最大值和最小值 过程与方法 1 通过研究函数的切线 单调性 极大 小 值以及函数在连续区间 a b 上的最大 小 值 培养学生的数学思维能力 2 通过求解一些实际问题的最大值和最小值 培养学生分析问题 解决问题的能力 以及数学建模能力 情感态度 价值观 逐步培养学生养成运用数形结合 等价转化 函数与方程等数学思想方法思考问题 解决问题的习惯 一 知识点 1 导数应用的知识网络结构图 重点导析 一 曲线的切线及函数的单调性 2 求可导函数单调区间的一般步骤和方法 2 求导数 3 解不等式 或解不等式 1 求的定义域d 4 与定义域求交集 5 写出单调区间 题型一 利用导数求切线斜率 瞬时速度 解法提示 在某一点切线的斜率或在某一时刻的瞬时速度就是该点或该时刻对应的导数 题型二 求函数的单调区间 分析 确定函数的单调区间 即在其定义域区间内确定其导数为正值与负值的区间 二 可导函数的极值 求导数 2 求可导函数 极值的步骤 题型三 求函数的极值与最值 三 函数的最大值与最小值 1 设 是定义在区间 a b 上的函数 在 a b 内有导数 求函数 在 a b 上的最大值与 最小值 可分两步进行 例 函数 在 0 3 上的最值 题型四 利用求导解应用题 例1如图 有甲 乙两人 甲位于乙的正东100km处开始骑自行车以每小时20km的速度向正西方向前进 与此同时 乙以每小时10km的速度向正北方向跑步前进 问经过多少时间甲 乙相距最近 b a 乙 甲 如图 解 设da xkm 那么db 100 x km cd km 又设铁路上每吨千米的运费为3t元 则公路上每吨千米的运费为5t元 这样 每吨原料从供应站b运到工厂c的总运费为 令 在的范围内有唯一解x 15 所以 当x 15 km 即d点选在距a点15千米时 总运费最省 注 可以进一步讨论 当ab的距离大于15千米时 要找的最优点总在距a点15千米的d点处 当ab之间的距离不超过15千米时 所选d点与b点重合 练习 已知圆锥的底面半径为r 高为h 求内接于这个圆锥体并且体积最大的圆柱体的高h 答 设圆柱底面半径为r 可得r r h h h 易得当h h 3时 圆柱体的体积最大 2 与数学中其它分支的结合与应用 例3 在边长为60cm的正方形铁皮的四角切去相等的正方形 再把它的边沿虚线折起 如图 做成一个无盖的方底箱子 箱底边长为多少时 箱子的容积最大 最大容积是多少 解 设箱底边长为x 则箱高h 60 x 2 箱子容积v x x2h 60 x2 x3 2 0 x 60 令 解得x 0 舍去 x 40 且v 40 16000 由题意可知 当x过小 接近0 或过大 接近60 时 箱子的容积很小 因此 16000是最大值 答 当x 40cm时 箱子容积最大 最大容积是16000cm3 类题 圆柱形金属饮料罐的容积一定时 它的高与底半径应怎样选取 才能使所用的材料最省 解 设圆柱的高为h 底半径为r 则表面积s 2 rh 2 r2 由v r2h 得 则 令 解得 从而 即h 2r 由于s r 只有一个极值 所以它是最小值 答 当罐的高与底半径相等时 所用的材料最省 解 设b x 0 0 x 2 则a x 4x x2 从而 ab 4x x2 bc 2 2 x 故矩形abcd的面积为 s x ab bc 2x3 12x2 16x 0 x 2 令 得 所以当时 因此当点b为时 矩形的最大面积是 例5 证明不等式 证 设 则 令 结合x 0得x 1 而01时 所以x 1是f x 的极小值点 所以当x 1时 f x 取最小值f 1 1 从而当x 0时 f x 1恒成立 即 成立 例6 已知函数f x ax3 bx2 曲线y f x 过点p 1 2 且在点p处的切线恰好与直线x 3y 0垂直 1 求a b的值 2 若f x 在区间 m m 1 上单调递增 求m的取值范围 解 1 由题意得 2 解得x 0或x 2 故f x 的单调递增为 2 和 0 即m 1 2或m 0 故m 3或m 0 例7 2001 新课程卷 文史类 21 已知函数f x x3 3ax2 2bx在点x 1处有极小值 1 试确定a b的值 并求出f x 的单调区间 注 此题为p 252课后强化训练第8题 解 由已知得 由得 由得 故函数f x 的单调递增区间是 1 3 和 1 单调递减区间是 1 3 1 练习1 已知函数f x x3 3ax b a 0 的极大值为6 极小值为2 1 试确定常数a b的值 2 求函数的单调递增区间 答案 1 a 1 b 4 2 单调递增区间为 1 和 1 练习2 已知函数f x x3 ax2 bx c在x 2 3与x 1处都取得极值 1 求a b的值 2 若x 1 2 时 不等式f x c2恒成立 求c的取值范围 答案 1 a 1 2 b 2 2 利用f x max2 练习3 若函数f x x3 bx2 cx在 0 及 2 上都是增函数 而在 0 2 上是减函数 求此函数在 1 4 上的值域 答 由已知得可求得c 0 b 3 从而f x x3 3x2 又f 1 f 2 4 f 0 0 f 4 16 所以函数f x 在 1 4 上的值域是 4 16 难点突破 1 关于单调性的定义 条件是充分非必要的 若 在 a b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论