一次函数方案设计问题.doc_第1页
一次函数方案设计问题.doc_第2页
一次函数方案设计问题.doc_第3页
一次函数方案设计问题.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一次函数方案设计问题 一次函数是最基本的函数,它与一次方程、一次不等式有着密切联系,接下来搜集了一次函数方案设计问题,欢迎查看,希望帮助到大家。 1、优惠方案的设计 例:某校校长暑假将带领该校市级“三好生”去北京旅游。甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待。”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠。”若全票价为240元。(x大于等于1) (1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式); (2)当学生数是多少时,两家旅行社的收费一样; (3)就学生数x讨论哪家旅行社更优惠。 解(1)y甲=120x+240,y乙=24060%(x+1)=144x+144。 (2)根据题意,得120x+240=144x+144,解得x=4。 答:当学生人数为4人时,两家旅行社的收费一样多。 (3)当y甲y乙,120x+240144x+144,解得1x4。 当y甲y乙,120x+2404。 答:当学生人数少于4人大于等于1时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;本题运用了一次函数、方程、不等式等知识,解决了优惠方案的设计问题。 综上所述,利用一次函数的图象、性质及不等式的整数解与方程的有关知识解决了实际生活中许多的方案设计问题。 2.调运方案设计 例:北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台。求: (1)若总运费为8400元,上海运往汉口应是多少台? (2)若要求总运费不超过8200元,共有几种调运方案? (3)求出总运费最低的调运方案,最低总运费是多少元? 设上海运往汉口x台 解:设上海厂运往汉口x台,那么上海运往重庆有(4-x)台,北京厂运往汉口(6-x)台,北京厂运往重庆(4+x)台,则总运费W关于x的一次函数关系式: W=3x+4(6-x)+5(4-x)+8(4+x)=76+2x。 (1)当W=84(百元)时,则有76+2x=84,解得x=4。 若总运费为8400元,上海厂应运往汉口4台。 (2)当W82(元),则 解得0x3,因为x只能取整数,所以x只有四种可的能值:0、1、2、3。 答:若要求总运费不超过8200元,共有4种调运方案。 (3)因为一次函数W=76+2x随着x的增大而增大,又因为0x3,所以当x=0时,函数W=76+2x有最小值,最小值是W=76(百元),即最低总运费是7600元。 此时的调运方案是:上海厂的4台全部运往重庆;北京厂运往汉口6台,运往重庆4台。 本题运用了函数思想得出了总运费W与变量x的一般关系,再根据要求运用方程思想、不等式等知识解决了调运方案的设计问题。并求出了最低运费价。 3、生产方案的设计 例:某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。 (1)要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来; (2)生产A、B两种产品获总利润是y(元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少? 解(1)设安排生产A种产品x件,则生产B种产品是(50-x)件。由题意得 列不等式组: 9x+4(50-x)360 3x+10(5-x)290 解不等式组得30x32。 因为x是整数,所以x只取30、31、32,相应的(50-x)的值是20、19、18。 所以,生产的方案有三种,即第一种生产方案:生产A种产品30件,B种产品20件;第二种生产方案:生产A种产品31件,B种产品19件;第三种生产方案:生产A种产品32件,B种产品18件 (2)设生产A种产品的件数是x,则生产B种产品的件数是50-x。由题意得 y=700x+1200(50-x)=-500x+6000。(其中x只能取30,31,32。) 因为-5000,所以此一次函数y随x的增大而减小, 所以当x=30时,y的值最大。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论