全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
方程的根与函数的零点教案 本文题目:高一数学教案:方程的根与函数的零点教案 学习目标 1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系; 2.掌握零点存在的判定定理. 学习过程 一、课前准备 (预习教材P86P88,找出疑惑之处) 复习1:一元二次方程+bx+c=0(a0)的解法. 判别式=. 当0,方程有两根,为; 当0,方程有一根,为; 当0,方程无实根. 复习2:方程+bx+c=0(a0)的根与二次函数y=ax+bx+c(a0)的图象之间有什么关系? 判别式一元二次方程二次函数图象 二、新课导学 学习探究 探究任务一:函数零点与方程的根的关系 问题: 方程的解为,函数的图象与x轴有个交点,坐标为. 方程的解为,函数的图象与x轴有个交点,坐标为. 方程的解为,函数的图象与x轴有个交点,坐标为. 根据以上结论,可以得到: 一元二次方程的根就是相应二次函数的图象与x轴交点的. 你能将结论进一步推广到吗? 新知:对于函数,我们把使的实数x叫做函数的零点(zeropoint). 反思: 函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系? 试试: (1)函数的零点为;(2)函数的零点为. 小结:方程有实数根函数的图象与x轴有交点函数有零点. 探究任务二:零点存在性定理 问题: 作出的图象,求的值,观察和的符号 观察下面函数的图象, 在区间上零点;0; 在区间上零点;0; 在区间上零点;0. 新知:如果函数在区间上的图象是连续不断的一条曲线,并且有0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根. 讨论:零点个数一定是一个吗?逆定理成立吗?试结合图形来分析. 典型例题 例1求函数的零点的个数. 变式:求函数的零点所在区间. 小结:函数零点的求法. 代数法:求方程的实数根; 几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 动手试试 练1.求下列函数的零点: (1); (2). 练2.求函数的零点所在的大致区间. 三、总结提升 学习小结 零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理 知识拓展 图象连续的函数的零点的性质: (1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号. 推论:函数在区间上的图象是连续的,且,那么函数在区间上至少有一个零点. (2)相邻两个零点之间的函数值保持同号. 学习评价 自我评价你完成本节导学案的情况为(). A.很好B.较好C.一般D.较差 当堂检测(时量:5分钟满分:10分)计分: 1.函数的零点个数为(). A.1B.2C.3D.4 2.若函数在上连续,且有.则函数在上(). A.一定没有零点B.至少有一个零点 C.只有一个零点D.零点情况不确定 3.函数的零点所在区间为(). A.B.C.D. 4.函数的零点为. 5.若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为. 课后作业 1.求函数的零点所在的大致区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025山东齐安检测技术有限公司招聘7人(淄博)笔试历年常考点试题专练附带答案详解试卷3套
- 2025安徽阜阳界首市发展中小企业融资担保有限责任公司招聘工作人员10人笔试历年常考点试题专练附带答案详解试卷3套
- 2025协合新能源集团有限公司招聘1568+人【原中国风电】笔试历年典型考点题库附带答案详解试卷3套
- 十五五规划纲要解读:工业产品绿色设计政策支持
- 研学基地客户服务与体验优化方案
- 2025年及未来5年市场数据中国中药饮片市场供需预测及投资战略研究咨询报告
- 大兴区公务员考试方案试题及答案
- 供热设备远程控制与维护方案
- 矿山安全生产管理方案
- 供热管网建设方案
- 体育场馆大型活动安全管理和应急预案
- 卫生院老年人健康管理工作总结
- 报案授权委托书
- 妇幼保健院新生儿口腔护理操作考核评分标准
- 晒谷场项目申请书
- 基于单片机的智能恒温箱设计
- T-CHSA 010-2023 恒牙拔牙术临床操作规范
- 车辆使用申请表
- 小学四年级数学上册促销问题
- 社会主义核心价值观与中华传统文化
- 镇村综治中心治安防控室工作台账(完整打印版)
评论
0/150
提交评论