免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
梯田文化 教辅专家 课堂点睛 课堂内外 作业精编三角形全等的判定(二)教学目标1三角形全等的“边角边”的条件2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程3掌握三角形全等的“SAS”条件,了解三角形的稳定性4能运用“SAS”证明简单的三角形全等问题教学重点三角形全等的条件教学难点寻求三角形全等的条件教学过程一、创设情境,复习提问1怎样的两个三角形是全等三角形?2全等三角形的性质?3指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:图(1)中:ABDACE,AB与AC是对应边;图(2)中:ABCAED,AD与AC是对应边三角形全等的判定的内容是什么?二、导入新课1三角形全等的判定(二)(1)全等三角形具有“对应边相等、对应角相等”的性质那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,ABO和CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AOCO,AOB COD,BODO如果把OAB绕着O点顺时针方向旋转,因为OAOC,所以可以使OA与OC重合;又因为AOB COD, OBOD,所以点B与点D重合这样ABO与CDO就完全重合(此外,还可以图1(1)中的ACE绕着点A逆时针方向旋转CAB的度数,也将与ABD重合图1( 2)中的ABC绕着点A旋转,使AB与AE重合,再把ADE沿着AE(AB)翻折180两个三角形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等2上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:画DAE45,在AD、AE上分别取 B、C,使 AB3.1cm, AC2.8cm连结BC,得ABC按上述画法再画一个ABC(2)把ABC剪下来放到ABC上,观察ABC与ABC是否能够完全重合?3边角边公理有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)三、例题与练习1填空:(1)如图3,已知ADBC,ADCB,要用边角边公理证明ABCCDA,需要三个条件,这三个条件中,已具有两个条件,一是ADCB(已知),二是_;还需要一个条件_(这个条件可以证得吗?)(2)如图4,已知ABAC,ADAE,12,要用边角边公理证明ABDACE,需要满足的三个条件中,已具有两个条件:_(这个条件可以证得吗?)2、例1 已知: ADBC,AD CB(图3)求证:ADCCBA问题:如果把图3中的ADC沿着CA方向平移到ADF的位置(如图5),那么要证明ADF CEB,除了ADBC、ADCB的条件外,还需要一个什么条件(AF CE或AE CF)?怎样证明呢?例2 已知:ABAC、ADAE、12(图4)求证:ABDACE四、小 结:1根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件2找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理五、作 业:1已知:如图,ABAC,F、E分别是AB、AC的中点求证:ABEACF2已知:点A、F、E、C在同一条直线上, AFCE,BEDF,BEDF求证:ABECDF数学质量检测试题命题说明一、命题指导思想: 依据小学数学课程标准及小学数学教学大纲的相关要求,本学期所学教材所涉猎的基础知识、基本技能为切入点,贯彻“以学生为本,关注每一位学生的成长”的教育思想,旨在全面培养学生的数学素养。二、命题出发点: 面向全体学生,关注不同层面学生的认知需求,以激励、呵护二年级学生学习数学的积极性,培养学生认真、严谨、科学的学习习惯,促进学生逐步形成良好的观察能力、分析能力及缜密的逻辑思维能力,培养学生学以致用的实践能力为出发点。三、命题原则: 以检验学生基础知识、基本技能,关注学生的情感为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 滴水法松香工操作规程能力考核试卷含答案
- 玻璃钢制品灌注工安全生产知识模拟考核试卷含答案
- 紫胶洗色干燥工安全管理考核试卷含答案
- 胶合板胶合工安全生产规范评优考核试卷含答案
- 移动通信机务员岗前安全防护考核试卷含答案
- 微生物农药生产工岗前竞赛考核试卷含答案
- 游泳救生员岗前持续改进考核试卷含答案
- 电焊机装配工岗前安全宣贯考核试卷含答案
- 医学影像设备组装调试工安全生产规范评优考核试卷含答案
- 植物标本采集制作工岗前流程考核试卷含答案
- 科技园区入驻合作协议
- 电大专科《个人与团队管理》期末答案排序版
- 山东科技大学《基础化学(实验)》2025-2026学年第一学期期末试卷
- 2025年河北邯郸武安市公开招聘食品检测专业技术人员4名笔试考试参考题库及答案解析
- 2025年吐鲁番辅警招聘考试题库必考题
- 急诊科护理教案
- 胸外科诊疗指南技术操作规范
- 护理放射科小讲课
- 2025-2026学年冀教版二年级数学上册(全册)教学设计(附目录)
- 2025年生态环境监测系统建设可行性研究报告及总结分析
- 桥下开挖施工方案
评论
0/150
提交评论