



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.3 实数第1课时 实数【知识与技能】1.了解无理数和实数的概念,会将实数按一定的标准进行分类.2.了解分类的标准和分类结果的相关性,进一步了解体会“集合”的含义.【过程与方法】 在按不同标准给实数分类的过程中,培养学生的分类能力.【情感态度】从分类、集合的思想中领悟数学的内涵,激发兴趣.【教学重点】正确理解实数的概念.【教学难点】理解实数的概念.一、情境导入,初步认识问题 请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.二、思考探究,获取新知例1 (1)试着写出几个无理数.(2)判断下列各数中,哪些是有理数?哪些是无理数?由学生共同完成上述问题后,要求学生思考:1.如何把实数分类?2.用根号形式表示的数一定是无理数吗?出示实数分类表:【教学说明】指导学生认识两种分类方式的异同,并特别强调“0”在表中的位置,考虑问题时不能忘记特殊数0.例2 将例1(2)中各数填入相应括号内.整数集合 正数集合 有理数集合 负数集合 无理数集合 例3下列说法错误的是( ).A.的平方根是2B.是无理数C.是有理数D.是分数分析:的平方根即4的平方根2, =-3是有理数,而是无理数,不属于有理数范围,故其不可能是分数.故选D.【教学说明】判断一个数是不是无理数,不能只看最初形式,而要看化简后的最后结果.三、运用新知,深化理解1.下列说法中正确的是( )A.是一个无理数B.在中x1C.8的立方根是2D.若点P(2,a)和点Q(b,-3)关于y轴对称,则a+b的值是52.下列各数中,不是无理数的是( )3.下列各数中:其中无理数有 .有理数有 .4.判断正误.(1)有理数包括整数、分数和零.(2)不带根号的数是有理数.(3)带根号的数是无理数.(4)无理数都是无限小数.(5)无限小数都是无理数.【教学说明】学生自主完成,教师巡视,然后集体订正.【答案】1.B 2.D四、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识?你还有哪些问题,与同伴交流.1.布置作业:从教材“习题6.3”中选取.2.完成练习册中本课时的练习.本课时应从注重学生认知水平和亲身感受出发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 发酵相关培训课件
- 2025探放水规定试题及答案
- 2025考研政治真题及答案详细解析
- 零售与电商行业2025年市场潜力与竞争格局研究报告
- 体育概论期末考试题及答案
- 2025年应急管理与应急响应考试试题及答案
- 公司收购转让股权合同4篇
- 小学教育:新质生产力的融合
- 策划书正文字体大小
- 长都医学建设工程环境影响报告表
- 2024年河北科技师范学院招聘真题
- 2025版网络直播临时促销员劳务合同
- 培训班校长述职报告课件
- 传染病信息报告管理规范2025年版培训试题及答案
- 临床患者身份识别管理标准
- 抗菌药物处方医师培训考核试题及答案
- 新时代班主任角色转型与实践案例
- 统编版二年级《语文》上册新教材解读课件
- 公务用车管理制度与车辆维护
- 专科医院介绍
- 粉煤灰运输应急事故处理流程
评论
0/150
提交评论