




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
指数与指数函数【考纲要求】1.理解分数指数的概念,掌握有理指数幂的运算性质2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;3.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域;4.掌握指数函数图象:5.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法;【知识网络】指数与指数函数图象与性质指数运算性质指数函数的图像与性质指数的概念【考点梳理】考点一、整数指数幂的概念及运算性质(1)整数指数幂的概念(2)运算法则;.考点二、根式的概念和运算法则(1)n次方根的定义:若xn=y(nn*,n1,yr),则x称为y的n次方根.要点诠释:n为奇数时,正数y的奇次方根有一个,是正数,记为;负数y的奇次方根有一个,是负数,记为;零的奇次方根为零,记为;n为偶数时,正数y的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根为零,记为.(2)根式的意义与运算法则考点三、分数指数幂的概念和运算法则为避免讨论,我们约定a0,n,mn*,且为既约分数,分数指数幂可如下定义:考点四、有理数指数幂的运算性质(1) (2) (3)当a0,p为无理数时,ap是一个确定的实数,上述有理数指数幂的运算性质仍适用.要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如;(3)幂指数不能随便约分.如.考点五、指数函数(1)定义:函数y=ax(a0且a1)叫做指数函数,其中x是自变量,a为常数,函数定义域为r.(2)图象及性质:y=ax0a1时图象图象性质定义域r,值域 (0,+)a0=1, 即x=0时,y=1,图象都经过(0,1)点ax=a,即x=1时,y等于底数a在定义域上是单调减函数在定义域上是单调增函数x1x0时,0ax1x0时,0ax0时,ax1 既不是奇函数,也不是偶函数【典型例题】类型一、指数运算、化简、求值例1.已知,且,求的值。【解析】【总结升华】运算顺序(能否应用公式);举一反三:【变式】计算下列各式:(1);(2);(3).【解析】(1)原式;(2)原式=;(3)原式.类型二、函数的定义域、值域例2求下列函数的定义域、值域.(1);(2)y=4x-2x+1;(3);(4)(a为大于1的常数)【解析】(1)函数的定义域为r (对一切xr,2x-1). ,又 2x0, 1+2x1, , , , 值域为(0,1).(2)定义域为r, 2x0, 即 x=-1时,y取最小值,同时y可以取一切大于的实数, 值域为).(3)定义域为r,|x|0, -|x|0, , 值域为(0,1.(4) 定义域为(-,-1)1,+),又 , , 值域为1,a)(a,+).【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y0的条件,第(4)小题中不能遗漏.举一反三:【变式】求下列函数的定义域:(1) (2) (3)【解析】(1)需满足3-x0,即(3) 为使得函数有意义,需满足2x-10,即2x1,故x0(4)a1时,;0a10.983.1 (4)a1时,0a1, 所以y=1.3x在r上为增函数1.30.71.30=1, .【变式2】求函数的值域及单调区间.【解析】设u=-x2+3x-2, y=3u,其中y=3u为r上的单调增函数,u=-x2+3x-2在上单增,u=-x2+3x-2在上单减,则在上单增,在上单减.又u=-x2+3x-2, 的值域为.例4.化简:【解析】类型四、判断函数的奇偶性例5判断下列函数的奇偶性: (为奇函数)【解析】f(x)定义域关于原点对称(定义域关于原点对称,且f(x)的定义域是定义域除掉0这个元素),令,则 g(x)为奇函数, 又 为奇函数, f(x)为偶函数.举一反三:【变式】判断函数的奇偶性:.【解析】定义域x|xr且x0,又 , f(-x)=f(x),则f(x)偶函数.类型五、指数函数的图象问题例6为了得到函数的图象,可以把函数的图象()a向左平移9个单位长度,再向上平移5个单位长度b向右平移9个单位长度,再向下平移5个单位长度c向左平移2个单位长度,再向上平移5个单位长度d向右平移2个单位长度,再向下平移5个单位长度【解析】,把函数的图象向左平移2个单位长度,再向上平移5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安全员考试试题及答案
- 2025公交安全考试试题及答案
- 2025年教育心理学知识试题及答案
- 初级美容模拟试题及答案
- 中药技师考试试题及答案
- 2025年职业卫生技术考试试题及答案
- 煤炭销售考试试题及答案
- 生物结业考试试题及答案
- 2025年混凝土试验工试题及答案
- 大林和小林阅读测试题及答案
- GB 23466-2025听力防护装备的选择、使用和维护
- 人教PEP版(2024)四年级上册英语-Unit 3 Places we live in 单元整体教学设计(共6课时)
- 华为信息安全管理培训课件
- 贵阳市殡仪服务中心招聘考试真题2024
- 重庆市危险化学品企业变更管理实施指南(试行)解读2025.7.25
- 煤改电工程施工质量监控方案和措施
- 布病的护理教学课件
- (2025年标准)预售小麦协议书
- 2025年院感测试题及答案
- 公司培训防诈骗知识宣传课件
- 2025年全国《质量知识竞赛》题库及答案
评论
0/150
提交评论