北京市东城区高三数学12月综合练习(一)试题 理 北师大版.doc_第1页
北京市东城区高三数学12月综合练习(一)试题 理 北师大版.doc_第2页
北京市东城区高三数学12月综合练习(一)试题 理 北师大版.doc_第3页
北京市东城区高三数学12月综合练习(一)试题 理 北师大版.doc_第4页
北京市东城区高三数学12月综合练习(一)试题 理 北师大版.doc_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市东城区普通高中示范校2013届高三综合练习(一)数学试卷(理科)一、选择题:本大题共8小题。每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的.1已知全集,集合,则为abcd2是的a充分不必要条件 b必要不充分条件 c充要条件 d既不充分也不必要条件3若,则下列各式正确的是a b c d4在等差数列中,且,则的最大值是a b c d5如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的体积为a b c d 6下列命题中,真命题是a bc d7已知、为双曲线c:的左、右焦点,点在上,=,则到轴的距离为 a b c d 8设函数,若互不相等的实数满足,则的取值范围是 a b c d 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9已知则_.10函数在区间上存在一个零点,则实数的取值范围是 11由曲线,直线及轴所围成的图形的面积为 .12正三角形边长为2,设,则_.13已知命题:是奇函数;。下列函数:,中能使都成立的是 .(写出符合要求的所有函数的序号).14 集合,集合,,设集合是所有的并集,则的面积为_.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明步骤或演算步骤.15(本小题满分13分)已知函数(1)求函数的最小正周期和单调递增区间;(2)函数的图象经过怎样的变换可以得到的图象?16(本小题满分13分)已知数列的前项和为,数列满足,(1)求数列的通项公式; (2)求数列的前项和.17(本小题满分14分)如图,在三棱锥中,侧面与底面垂直, 分别是的中点,.(1)求证:/平面;(2)若点在线段上,问:无论在的何处,是否都有?请证明你的结论;(3)求二面角的平面角的余弦值.18. (本小题满分13分)椭圆的中心为坐标原点,右焦点为,且椭圆过点。的三个顶点都在椭圆上,设三条边的中点分别为.(1)求椭圆的方程;(2)设的三条边所在直线的斜率分别为,且。若直线的斜率之和为0,求证:为定值.19. (本小题满分13分)已知函数().(1)求函数的单调区间;(2)对,不等式恒成立,求的取值范围20(本小题满分14分) 将所有平面向量组成的集合记作,是从到的映射,记作或,其中都是实数。定义映射的模为:在的条件下的最大值,记做.若存在非零向量,及实数使得,则称为的一个特征值.(1)若,求;(2)如果,计算的特征值,并求相应的;(3)若,要使有唯一的特征值,实数应满足什么条件?试找出一个映射,满足以下两个条件:有唯一的特征值,,并验证满足这两个条件.北京市东城区普通高中示范校2013届高三综合练习(一)数学试卷(理科)参考答案题号12345678答案caccbdbd9. 1 10. 11. 12. 13. 14. 15.解:(1) = = = 6分 最小正周期 单调递增区间 , 9分 (2) 向左平移个单位;向下平移个单位 13分16解(1) 4分 +3 , +3,两式作差:3-=2 10分 (2) = 13分17解:(1)分别是的中点 / 又平面 /平面 3分(2) 在中,/, 平面平面, 平面,平面 平面 平面 所以无论在的何处,都有 8分(3) 由(2)平面又平面 是二面角的平面角在中所以二面角的平面角的余弦值为 14分法二:(2) 是的中点, 又平面平面平面同理可得平面在平面内,过作 以为原点,所在直线为轴,建立空间直角坐标系,如图所示,则, ,设,则, 恒成立,所以无论在的何处,都有(3)由(2)知平面的法向量为= 设平面的法向量为 则,即 令,则,所以二面角的平面角的余弦值为 14分18解:(1)设椭圆的方程为,由题意知:左焦点为所以,解得, 故椭圆的方程为(方法2、待定系数法)4分(2)设,由:,两式相减,得到所以,即, 9分同理,所以,又因为直线的斜率之和为0,所以 13分方法2:设直线:,代入椭圆,得到,化简得以下同。 13分19解:(1)2分当时,0-0+递增极大递减极小递增所以,在和上单调递增;在上单调递减。当时,在上单调递增。当时,+0-0+递增极大递减极小递增所以,在和上单调递增;在上单调递减。8分(2)法一、因为,所以由得,即函数对恒成立由()可知,当时,在单调递增,则,成立,故。当,则在上单调递增,恒成立,符合要求。当,在上单调递减,上单调递增,则,即,。综上所述,。 13分法二、当时,;当时,由得,对恒成立。设,则由,得或-0+递减极小递增,所以,。 13分20解:(1)由于此时,又因为是在的条件下,有 (时取最大值),所以此时有。4分(2)由,可得:,解此方程组可得:,从而。当时,解方程 此时这两个方程是同一个方程,所以此时方程有无穷多个解,为(写出一个即可),其中且。当时,同理可得,相应的(写出一个即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论