




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省东北师范大学附属中学2014-2015学年高中数学 1-1.2.3.4抛物线及简单几何性质小结教案 新人教a版选修1-1一、教学目标(一)知识教学点使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质(二)能力训练点从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力(三)学科渗透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,这样才能解决抛物线中的弦、最值等问题二、教材分析1重点:抛物线的几何性质及初步运用(解决办法:引导学生类比椭圆、双曲线的几何性质得出)2难点:抛物线的几何性质的应用(解决办法:通过几个典型例题的讲解,使学生掌握几何性质的应用)3疑点:抛物线的焦半径和焦点弦长公式(解决办法:引导学生证明并加以记忆)三、活动设计提问、填表、讲解、演板、口答教学过程【情境设置】由一名学生回答,教师板书问题 抛物线的标准方程是怎样的?答为:抛物线的标准方程是 1抛物线的几何性质(1)范围因为 ,由方程可知 ,所以抛物线在 轴的右侧,当 的值增大时, 也增大,这说明抛物线向右上方和右下方无限延伸(2)对称性以 代 ,方程不变,所以抛物线关于 轴对称我们把抛物线的对称轴叫做抛物线的轴(3)顶点抛物线与它的轴的交点叫做抛物线的顶点,在方程中,当 时 ,因此抛物线的顶点就是坐标原点(4)离心率抛物线上的点与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,由抛物线的定义可知 其他三种标准方程抛物线的几何性质可类似地求得,教师用小黑板给出来表让学生填写再向学生提出问题:与椭圆、双曲线的几何性质比较,抛物线的几何性质有什么特点?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;(2)抛物线只有一条对称轴,没有对称中心;(3)抛物线只有一个顶点、一个焦点、一条准线;(4)抛物线的离心率是确定的,为1【例题分析】例1已知抛物线关于 轴对称,它的顶点在坐标原点,并且经过点 ,求它的标准方程,并用描点法画出图形求标准方程,请一名学生演板,教师予以纠正画图可由教师讲解,步骤如下:描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分(如图 )然后说明利用抛物线的通性,能够方便地画出反映抛物线基本特征的草图例2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处已知灯口圆的直径为 ,灯深 ,求抛物线的标准方程和焦点位置解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合, 轴垂直于灯口直径抛物线的标准方程为 ,由已知条件可得点 的坐标是(40,30)且在抛物线上,代入方程得: , 所以所求抛物线的标准方程为 ,焦点坐标是 .(三)随堂练习1求适合下列条件的抛物线方程顶点在原点,关于 轴对称,并且经过点 顶点在原点,焦点是 顶点在原点,准线是 焦点是 ,准线是 2一条隧道的顶部是抛物拱形,拱高是 m,跨度是 m,求拱形的抛物线方程答案:1 2 (要选建立坐标系)(四)总结提炼抛物线的性质和椭圆、双曲线比较起来,差别较大它的离心率等于1;它只有一个焦点、一个顶点、一条对称轴、一条准线;它没有中心,也没有渐近线(五)布置作业1顶点在原点、焦点在 轴上,且过点 的抛物线方程是( )a b c d 2若抛物线 上横坐标为6的点到焦点的距离为8,则焦点到准线的距离为( )a1b2c4d63若垂直于 轴的直线交抛物线 于点 ,且 ,则直线 的方程为_. 4抛物线形拱桥,当水面宽 时,水面离拱顶为 ,若水下降 ,则此时水面宽为_. 5抛物线的顶点是双曲线 的中心,而焦点是双曲线的左顶点,求抛物线方程6若抛物线 上一点 到准线及对称轴的距离分别是10和6,求 的横坐标及抛物线方程答案:1b 2c 3 4 5 69, 教案点评:本节课首先设置情境,让
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车机械制图试卷及答案
- 吊车指挥教学题库及答案
- 摩托车轮毂新建项目技术方案
- 绿化工程施工组织设计小包
- 环保设备安装与调试实施方案
- 离婚协议男方净身出户房产过户操作流程模板
- 离婚协议违约金条款的解除与变更规定
- 生源地信用助学贷款合同示范文本(专科)
- 离婚双方子女抚养权变更及经济补偿补充协议
- 离婚无子女子女监护协议范本与财产分割专项服务
- 福建省长泰一中解析重点中学2024届学业水平考试数学试题模拟卷(十)
- 商场能源审计报告
- 老旧房改造工程合同范本
- 高层民用建筑钢结构技术规程
- 第一、二、三、四单元试卷-2024-2025学年统编版九年级历史上册
- 学术英语智慧树知到答案2024年南开大学
- 食堂家长开放日活动方案及流程
- 机电一体化职业技能大赛试题及答案
- 网络传播概论(第5版)课件 第三章 网络传播形式的流变
- 三级安全教育试题及答案(包含公司级、部门级、班组级)
- 【市质检】福州市2024-2025学年高三年级第一次质量检测 地理试卷(含答案)
评论
0/150
提交评论