




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等比数列知识梳理:1、等比数列的定义:,称为公比2、通项公式:,首项:;公比:推广:3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列是等比数列4、等比数列的前项和公式:(1)当时,(2)当时,(为常数)5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列(2)等比中项:为等比数列(3)通项公式:为等比数列6、等比数列的证明方法:依据定义:若或为等比数列7、等比数列的性质:(1)当时等比数列通项公式是关于的带有系数的类指数函数,底数为公比;前项和,系数和常数项是互为相反数的类指数函数,底数为公比。(2)对任何,在等比数列中,有,特别的,当时,便得到等比数列的通项公式。因此,此公式比等比数列的通项公式更具有一般性。(3)若,则。特别的,当时,得 注:(4)数列,为等比数列,则数列,(为非零常数)均为等比数列。(5)数列为等比数列,每隔项取出一项仍为等比数列(6)如果是各项均为正数的等比数列,则数列是等差数列(7)若为等比数列,则数列,成等比数列(8)若为等比数列,则数列,成等比数列(9)当时, 当时,当时,该数列为常数列(此时数列也为等差数列);当时,该数列为摆动数列.(10)在等比数列中,当项数为时,二 例题解析【例1】 已知Sn是数列an的前n项和,Snpn(pR,nN*),那么数列an( )A 是等比数列 B当p0时是等比数列B C当p0,p1时是等比数列 D不是等比数列【例2】 已知等比数列1,x1,x2,x2n,2,求x1x2x3x2n式;(2)已知a3a4a58,求a2a3a4a5a6的值【例4】 设a、b、c、d成等比数列,求证:(bc)2(ca)2(db)2(ad)2【例5】 求数列的通项公式:(1)an中,a12,an+13an2(2)an中,a1=2,a25,且an+23an+12an0三 考点分析考点一:等比数列定义的应用1、数列满足,则_2、在数列中,若,则该数列的通项_考点二:等比中项的应用1、已知等差数列的公差为,若,成等比数列,则( )A B C D2、若、成等比数列,则函数的图象与轴交点的个数为( )AB CD不确定3、已知数列为等比数列,求的通项公式考点三:等比数列及其前n项和的基本运算1、若公比为的等比数列的首项为,末项为,则这个数列的项数是( )A B C D2、已知等比数列中,则该数列的通项_3、若为等比数列,且,则公比_4、设,成等比数列,其公比为,则的值为( )AB C D5、等比数列an中,公比q=且a2+a4+a100=30,则a1+a2+a100=_.考点四:等比数列及其前n项和性质的应用1、在等比数列中,如果,那么为( )A B C D2、如果,成等比数列,那么( )A,B,C, D,3、在等比数列中,则等于( )ABCD4、在等比数列中,则等于( )A B C D5、在等比数列中,和是二次方程的两个根,则的值为( )ABCD6、若是等比数列,且,若,那么的值等于 考点五:公式的应用1、若数列的前n项和Sn=a1+a2+an,满足条件log2Sn=n,那么an是( )A.公比为2的等比数列 B.公比为的等比数列C.公差为2的等差数列 D.既不是等差数列也不是等比数列2、 等比数列前n项和Sn=2n-1,则前n项的平方和为( )A. (2n-1)2 B.(2n-1)2 C.4n-1 D.(4n-1)3、 设等比数列an的前n项和为Sn=3n+r,那么r的值为_.4、设数列an的前n项和为Sn且S1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电石安全考试题库及答案解析
- 介绍学生到学校合同模板(3篇)
- 2025年长沙市税务系统遴选面试真题带答案详解
- 2025年水利工程专业考试试卷及答案
- 口腔考研资料靠谱店铺(3篇)
- 2025-2030中国工业互联网平台盈利模式与中小企业采纳障碍报告
- 2025-2030中国工业互联网平台发展评估报告
- 安全员b证笔试题库及答案解析
- 2025-2030中国城镇燃气特许经营模式优化与监管体系构建报告
- 2025-2030中国啤酒风味国际化比较研究与本土化创新路径分析报告
- 生产主管转正工作总结
- 2025至2030中国高纯铝行业发展趋势与行业发展研究与产业战略规划分析评估报告
- 西藏介绍课件
- 会务理论考试题及答案
- 2025年期货从业资格之《期货法律法规》真题附答案详解【巩固】
- 幼儿园各项安全管理制度汇编
- 2025年“安全生产年”工作总结(2篇)
- GB/T 2481.1-2025固结磨具用磨料粒度组成的检测和标记第1部分:粗磨粒F4~F220
- 2025-2026秋学生国旗下演讲稿:第4周涵养文明习惯点亮成长底色-养成教育
- 配电电缆故障定位试卷与答案
- 锦囊工程(修订版)
评论
0/150
提交评论