高考数学复习 专题02 函数与导数 函数的单调性与最值备考策略.doc_第1页
高考数学复习 专题02 函数与导数 函数的单调性与最值备考策略.doc_第2页
高考数学复习 专题02 函数与导数 函数的单调性与最值备考策略.doc_第3页
高考数学复习 专题02 函数与导数 函数的单调性与最值备考策略.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数的单调性与最值备考策略主标题:函数的单调性与最值备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。关键词:函数,单调性,最值,备考策略难度:3重要程度:5内容考点一确定函数的单调性或单调区间【例1】 (1)判断函数f(x)x(k0)在(0,)上的单调性(2)求函数ylog(x24x3)的单调区间解(1)法一任意取x1x20,则f(x1)f(x2)(x1x2)(x1x2)(x1x2).当x1x20时,x1x20,10,有f(x1)f(x2)0,即f(x1)f(x2),此时,函数f(x)x(k0)在(0,上为减函数;当x1x2时,x1x20,10,有f(x1)f(x2)0,即f(x1)f(x2),此时,函数f(x)x(k0)在,)上为增函数;综上可知,函数f(x)x(k0)在(0,上为减函数;在,)上为增函数法二f(x)1,令f(x)0,则10,解得x或x(舍)令f(x)0,则10,解得x.x0,0x.f(x)在(0,)上为减函数;在(,)上为增函数,也称为f(x)在(0,上为减函数;在,)上为增函数(2)令ux24x3,原函数可以看作ylogu与ux24x3的复合函数令ux24x30.则x1或x3.函数ylog(x24x3)的定义域为(,1)(3,)又ux24x3的图象的对称轴为x2,且开口向上,ux24x3在(,1)上是减函数,在(3,)上是增函数而函数ylogu在(0,)上是减函数,ylog(x24x3)的单调递减区间为(3,),单调递增区间为(,1)【备考策略】(1)对于给出具体解析式的函数,证明或判断其在某区间上的单调性有两种方法:可以利用定义(基本步骤为取值、作差或作商、变形、定号、下结论)求解;可导函数则可以利用导数解之(2)复合函数yfg(x)的单调性规律是“同则增,异则减”,即yf(u)与ug(x)若具有相同的单调性,则yfg(x)为增函数,若具有不同的单调性,则yfg(x)必为减函数考点二利用单调性求参数【例2】 已知函数f(x).(1)若a2,试证f(x)在(,2)上单调递减(2)函数f(x)在(,1)上单调递减,求实数a的取值范围(1)证明任设x1x22,则f(x1)f(x2).(x11)(x21)0,x1x20,f(x1)f(x2)0,f(x1)f(x2),f(x)在(,2)上单调递减(2)解法一f(x)a,设x1x20.由于x1x21,x1x20,x110,x210,a10,即a1.故a的取值范围是(,1)法二由f(x),得f(x),又因为f(x)在(,1)上是减函数,所以f(x)0在x(,1)上恒成立,解得a1,而a1时,f(x)1,在(,1)上不具有单调性,故实数a的取值范围是(,1)【备考策略】利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f(x1)f(x2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题考点三利用函数的单调性求最值【例3】 已知f(x),x1,)(1)当a时,求函数f(x)的最小值;(2)若对任意x1,),f(x)0恒成立,试求实数a的取值范围审题路线(1)当a时,f(x)为具体函数求出f(x)的单调性,利用单调性求最值(2)当x1,)时,f(x)0恒成立转化为x22xa0恒成立解(1)当a时,f(x)x2,联想到g(x)x的单调性,猜想到求f(x)的最值可先证明f(x)的单调性任取1x1x2,则f(x1)f(x2)(x1x2),1x1x2,x1x21,2x1x210.又x1x20,f(x1)f(x2),f(x)在1,)上是增函数,f(x)在1,)上的最小值为f(1).(2)在区间1,)上,f(x)0恒成立,则等价于a大于函数(x)(x22x)在1,)上的最大值只需求函数(x)(x22x)在1,)上的最大值(x)(x1)21在1,)上递减,当x1时,(x)最大值为(1)3.a3,故实数a的取值范围是(3,)【备考策略】求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论