高考数学大一轮复习 4.8三角函数模型及解三角形应用举例教师用书 理 苏教版.doc_第1页
高考数学大一轮复习 4.8三角函数模型及解三角形应用举例教师用书 理 苏教版.doc_第2页
高考数学大一轮复习 4.8三角函数模型及解三角形应用举例教师用书 理 苏教版.doc_第3页
高考数学大一轮复习 4.8三角函数模型及解三角形应用举例教师用书 理 苏教版.doc_第4页
高考数学大一轮复习 4.8三角函数模型及解三角形应用举例教师用书 理 苏教版.doc_第5页
免费预览已结束,剩余10页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.8三角函数模型及解三角形应用举例1三角函数模型的简单应用2用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等3实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图)(2)方向角:相对于某正方向的水平角,如南偏东30,北偏西45等(3)方位角指从正北方向顺时针转到目标方向线的水平角,如b点的方位角为(如图)(4)坡度:坡面与水平面所成的二面角的正切值4解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型(3)根据题意选择正弦定理或余弦定理求解(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等【思考辨析】判断下面结论是否正确(请在括号中打“”或“”)(1)仰角与俯角都是目标视线和水平线的夹角,故仰角与俯角没有区别()(2)从a处望b处的仰角为,从b处望a处的俯角为,则,的关系不能确定()(3)若p在q的北偏东44,则q在p的东偏北46.()(4)如果在测量中,某渠道斜坡坡比为,设为坡角,那么cos .()(5)如图,为了测量隧道口ab的长度,可测量数据a,b,进行计算()1.在某次测量中,在a处测得同一半平面方向的b点的仰角是60,c点的俯角是70,则bac_.答案130解析由已知bad60,cad70,bac6070130.2已知abc,c为坐标原点o,a(1,sin ),b(cos ,1),则当oab的面积达到最大值时,_.答案解析s11sin 1cos (1cos )(1sin )sin cos sin 2.当时,s取到最大值3某人向正东方向走x km后,向右转150,然后朝新方向走3 km,结果他离出发点恰好是 km,那么x的值为_答案或2解析如图所示,设此人从a出发,则abx,bc3,ac,abc30,由余弦定理得()2x2322x3cos 30,整理,得x23x60,解得x或2.4如图所示,位于a处的信息中心获悉:在其正东方向相距40海里的b处有一艘渔船遇险,在原地等待营救信息中心立即把消息告知在其南偏西30且相距20海里的c处的乙船,现乙船朝北偏东的方向即沿直线cb前往b处救援,则cos 等于_答案解析在abc中,ab40,ac20,bac120,由余弦定理,得bc2ab2ac22abaccos 1202 800,所以bc20.由正弦定理,得sinacbsinbac.由bac120,知acb为锐角,故cosacb.故cos cos(acb30)cosacbcos 30sinacbsin 30.题型一测量距离、高度问题例1(1)(2014四川)如图,从气球a上测得正前方的河流的两岸b,c的俯角分别为67,30,此时气球的高是46 m,则河流的宽度bc约等于_m(用四舍五入法将结果精确到个位参考数据:sin 670.92,cos 670.39,sin 370.60,cos 370.80,1.73)(2)某人在塔的正东沿着南偏西60的方向前进40米后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30,求塔高思维点拨(1)利用正弦定理解abc.(2)依题意画图,某人在c处,ab为塔高,他沿cd前进,cd40米,此时dbf45,从c到d沿途测塔的仰角,只有b到测试点的距离最短时,仰角才最大,这是因为tanaeb,ab为定值,be最小时,仰角最大要求塔高ab,必须先求be,而要求be,需先求bd(或bc)(1)答案60解析根据已知的图形可得ab.在abc中,bca30,bac37,由正弦定理,得,所以bc20.6060(m)(2)解如图所示,某人在c处,ab为塔高,他沿cd前进,cd40,此时dbf45,过点b作becd于e,则aeb30,在bcd中,cd40,bcd30,dbc135,由正弦定理,得,bd20(米)bde1801353015.在rtbed中,bedbsin 152010(1)(米)在rtabe中,aeb30,abbetan 30(3)(米)故所求的塔高为(3)米思维升华这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解在测量高度时,要正确理解仰角、俯角的概念,画出准确的示意图,注意综合应用方程、平面几何和立体几何等知识(1)如图所示,为测一树的高度,在地面上选取a,b两点,从a,b两点分别测得树尖的仰角为30,45,且a,b两点间的距离为60 m,则树的高度为_m.(2)(2013江苏)如图,游客从某旅游景区的景点a处下山至c处有两种路径一种是从a沿直线步行到c,另一种是先从a沿索道乘缆车到b,然后从b沿直线步行到c.现有甲、乙两位游客从a处下山,甲沿ac匀速步行,速度为50 m/min.在甲出发2 min后,乙从a乘缆车到b,在b处停留1 min后,再从b匀速步行到c.假设缆车匀速直线运动的速度为130 m/min,山路ac长为1 260 m,经测量cos a,cos c.求索道ab的长;问:乙出发多少分钟后,乙在缆车上与甲的距离最短?为使两位游客在c处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?(1)答案3030解析在pab中,pab30,apb15,ab60,sin 15sin(4530)sin 45cos 30cos 45sin 30,由正弦定理得,pb30(),树的高度为pbsin 4530()(3030)m.(2)解在abc中,因为cos a,cos c,所以sin a,sin c.从而sin bsin(ac)sin(ac)sin acos ccos asin c.由正弦定理,得absin c1 040(m)所以索道ab的长为1 040 m.假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(10050t)m,乙距离a处130t m,所以由余弦定理得d2(10050t)2(130t)22130t(10050t)200(37t270t50),由于0t,即0t8,故当t min时,甲、乙两游客距离最短由正弦定理,得bcsin a500(m)乙从b出发时,甲已走了50(281)550(m),还需走710 m才能到达c.设乙步行的速度为v m/min,由题意得33,解得v,所以为使两位游客在c处互相等待的时间不超过3 min,乙步行的速度应控制在(单位:m/min)范围内题型二测量角度问题例2如图,在海岸a处发现北偏东45方向,距a处(1)海里的b处有一艘走私船在a处北偏西75方向,距a处2海里的c处的我方缉私船奉命以10海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以b处向北偏东30方向逃窜问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间思维点拨设缉私船t小时后在d处追上走私船,确定出三角形,先利用余弦定理求出bc,再利用正弦定理求出时间解设缉私船应沿cd方向行驶t小时,才能最快截获(在d点)走私船,则cd10t(海里),bd10t(海里),在abc中,由余弦定理,有bc2ab2ac22abaccosbac(1)2222(1)2cos 1206.bc(海里)又,sinabc,abc45,b点在c点的正东方向上,cbd9030120,在bcd中,由正弦定理,得,sinbcd.bcd30,缉私船沿北偏东60的方向行驶又在bcd中,cbd120,bcd30,d30,bdbc,即10t.t小时15(分钟)缉私船应沿北偏东60的方向行驶,才能最快截获走私船,大约需要15分钟思维升华测量角度问题的一般步骤(1)在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离;(2)用正弦定理或余弦定理解三角形;(3)将解得的结果转化为实际问题的解如图,两座相距60 m的建筑物ab,cd的高度分别为20 m、50 m,bd为水平面,求从建筑物ab的顶端a看建筑物cd的张角的大小解依题意可得ad20(m),ac30(m),又cd50(m),所以在acd中,由余弦定理得coscad,又0cadx0.(1)将十字形的面积表示为的函数;(2)满足何种条件时,十字形的面积最大?最大面积是多少?思维点拨由题图可得:xcos ,ysin .列出面积函数后,利用三角函数性质求解,注意的范围解(1)设s为十字形的面积,则s2xyx22sin cos cos2 ();(2)s2sin cos cos2sin 2cos 2sin(2),其中tan ,当sin(2)1,即2时,s最大所以,当(tan )时,s最大,最大值为.思维升华三角函数作为一类特殊的函数,可利用其本身的值域来求函数的最值如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中oa与地面垂直,以oa为始边,逆时针转动角到ob,设b点与地面间的距离为h.(1)求h与间关系的函数解析式;(2)设从oa开始转动,经过t秒后到达ob,求h与t之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?解(1)以圆心o为原点,建立如图所示的平面直角坐标系,则以ox为始边,ob为终边的角为,故点b的坐标为(4.8cos(),4.8sin(),h5.64.8sin.(2)点a在圆上转动的角速度是弧度/秒,故t秒转过的弧度数为t,h5.64.8sin,t0,)到达最高点时,h10.4米由sin1,得t,t30秒,缆车到达最高点时,用的最少时间为30秒函数思想在解三角形中的应用典例:(14分)某港口o要将一件重要物品用小艇送到一艘正在航行的轮船上在小艇出发时,轮船位于港口o北偏西30且与该港口相距20海里的a处,并正以30海里/小时的航行速度沿正东方向匀速行驶假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由规范解答解(1)设相遇时小艇的航行距离为s海里,则s .4分故当t时,smin10,v30.6分即小艇以30海里/小时的速度航行,相遇小艇的航行距离最小7分(2)设小艇与轮船在b处相遇则v2t2400900t222030tcos(9030),故v2900.9分0v30,900900,即0,解得t.10分又t时,v30,故v30时,t取得最小值,且最小值等于.12分此时,在oab中,有oaobab20.故可设计航行方案如下:航行方向为北偏东30,航行速度为30海里/小时14分温馨提醒在解决数学问题时,有一种从未知转化为已知的手段,就是通过引入变量,寻找已知与未知之间的等量关系,构造函数,然后借助函数的变化趋势来分析或预测未知量的变化情况,这就是函数思想在解三角形应用举例中,借助函数思想可以解决以下两类问题:(1)距离最短的追缉问题(2)仰角(或视角)最大问题求解此类问题时可先借助三角形中的正(余)弦定理建立等量关系,然后借助函数的知识(如二次函数最值的求法,导数等)探求最优解.方法与技巧1合理应用仰角、俯角、方位角、方向角等概念建立三角函数模型2把生活中的问题化为二维空间解决,即在一个平面上利用三角函数求值3合理运用换元法、代入法解决实际问题失误与防范在解实际问题时,应正确理解如下角的含义1方向角从指定方向线到目标方向线的水平角2方位角从正北方向线顺时针到目标方向线的水平角3坡度坡面与水平面所成的二面角的正切值4仰角与俯角与目标视线在同一铅直平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时称为仰角,目标视线在水平视线下方时称为俯角.a组专项基础训练(时间:40分钟)1如果在测量中,某渠道斜坡的坡度为,设为坡角,那么cos _.答案解析因为tan ,所以cos .2有一长为1的斜坡,它的倾斜角为20,现高不变,将倾斜角改为10,则斜坡长为_(可用正弦、余弦值表示)答案2cos 10解析如图,abc20,ab1,adc10,abd160.在abd中,由正弦定理得,adab2cos 10.3一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点a测得水柱顶端的仰角为45,沿点a向北偏东30前进100 m到达点b,在b点测得水柱顶端的仰角为30,则水柱的高度是_m.答案50解析设水柱高度是h m,水柱底端为c,则在abc中,a60,ach,ab100,bch,根据余弦定理得,(h)2h210022h100cos 60,即h250h5 0000,即(h50)(h100)0,即h50,故水柱的高度是50 m.4.如图所示,b,c,d三点在地面的同一直线上,dca,从c,d两点测得a点的仰角分别为和(0,a0),则_,a_.答案3解析每分钟转4圈,每圈所需时间t15.又t15,a3.2某地震救援队探测出某建筑物废墟下方c处有生命迹象,已知废墟一侧地面上的a,b探测点相距4米,探测线与地面的夹角分别为30和75(如图所示),则生命所在点c的深度为_米答案1解析在abc中,由正弦定理得,bc2.点c的深度为bcsin 7521.3甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60,从甲楼顶望乙楼顶的俯角为30,则甲、乙两楼的高分别是_答案20米、米解析如图,依题意有甲楼的高度为ab20tan 6020(米),又cmdb20(米),cam60,所以amcm(米),故乙楼的高度为cd20(米)4某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在a处获悉后,立即测出该渔船在方位角为45,距离为10 n mile的c处,并测得渔船正沿方位角为1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论