



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.8 正多边形和圆教学目标1、了解正多边形的概念、正多边形和圆的关系,会判定一个正多边形是中心对称图形还是轴对称图形。2、会通过等分圆心角的方法等分圆周,画出所需的正多边形。3、能够用直尺和圆规作图,作出一些特殊的正多边形。教学重点 正多边形的概念及正多边形与圆的关系。教学难点 利用直尺与圆规作特殊的正多边形。教学过程教 学 活 动 内 容个人主页一、创设情境观察下列图形,你能说出这些图形的特征吗?二、新知探究1、探索正多边形的概念(1)观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念:各边相等、各角也相等的多边形叫做正多边形。(2)概念理解:请同学们举例,自己在日常生活中见过的正多边形(正三角形、正方形、正六边形,.)矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?(3)正n边形的每个内角等于多少度?每个外角呢?2、探索正多边形与圆的关系(1)你能借助量角器,利用圆来画正三角形吗?正方形呢?正五边形呢?正六边形呢?.学会利用量角器等分圆周的方法画正多边形。(2)引入圆的内接正多边形、正多边形的外接圆、正多边形的中心的概念。3、探索正多边形的对称性(1)图中的正多边形,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如是轴对称图形,画出它的对称轴;如是中心对称图形,找出它的对称中心。(如果一个正多边形是中心对称图形,那么它的中心就是对称中心。)(2)任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?4、探索用直尺和圆规作出正方形,正六多边形的方法。(1)作正四边形:在圆中作两条互相垂直的直径,依次连结四个端点所得图形(然如何作正八边形?作正十六边形?)(2)作正六边形:在圆中任作一条直径,再以两端点为圆心,相同的半径为半径作弧与圆相交,依次连结圆上的六个点所得图形(任何作正三角形?正十二边形?)三、尝试应用1、课本P48 习题5.14 2、课本P50 随堂练习四、解决问题1、填空题(1)正n边形的内角和为_,每一个内角都等于_,每一个外角都等于_.(2)正n边形的一个外角为24,那么n=_,若它的一个内角为135,则n=_(3)若一个正n边形的对角线的长都相等,则n=_(4)正八边形有_条对称轴,它不仅是_对称图形,还是_对称图形2、判断题:(1)各边都相等的多边形是正多边形()(2)每条边都相等的圆内接多边形是正多边形()(3)每个角都相等的圆内接多边形是正多边形()3、解答题:(1)已知:如图,正三角形,求作:正三角形ABC的外接圆和内切圆。(2)已知:如图,正五边形,求作:正五边形的外接圆和内切圆。(要求:保留痕迹,不写作法)五、课堂小结1、正多边形的概念、正多边形与圆的关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 路面工程勘察设计合同4篇
- 《中华人民共和国食品安全法》试题及答案
- 九月份工作计划怎么写(5篇)
- 警示教育心得体会怎么写(例文10篇)
- 执纪执法面试题目及答案
- 中小企业数字营销策略研究与实施
- 农业绿色发展2025政策导向:节水灌溉与水资源管理技术创新报告
- 农产品无损检测技术在农产品生产过程中的应用报告
- 2025年电气原理试题及答案
- 色彩构成试题及答案
- 配电作业专业技能实操-登杆更换台架边相跌落式熔断器
- 影片备案报告范文
- Unit 2 We are family Section A 1a-1d 课件【人教新目标(2024)七年级上册】-1
- (完整版)国际疾病分类ICD-10-培训
- 全运会转播制作标准
- 2024年新人教版8年级上册物理全册课件
- 2024年11月-矿山隐蔽致灾因素普查
- 上海市建设工程施工图设计文件勘察设计质量疑难问题汇编(2024 版)
- 《电力线路安规培训》课件
- 安宁疗护临床实践
- 陶瓷柔性化制备工艺-洞察分析
评论
0/150
提交评论