




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正弦定理 直角三角形中 斜三角形中这一关系式是否仍成立呢 课题引入 1 锐角三角形 2 钝角三角形 向量法 如图 外接圆法 在一个三角形中 各边和它所对角的正弦的比相等 即 正弦定理 变式 从理论上 正弦定理可解决两类问题 两角和任意一边 求其他两边和一角两边和其中一边对角 求另一边的对角 进而可求其他的边和角 正弦定理的应用 例1 已知在中 求和 例2 已知在中 求和 点评 正弦定理可以用于解决已知两角和一边求另两边和一角的问题 点评 正弦定理也可用于解决已知两边及一边的对角 求其他边和角的问题 例题评析 若a为锐角时 若a为直角或钝角时 已知a b和a 用正弦定理求b时的各种情况 判断满足下列的三角形的个数 1 b 11 a 20 b 30o 2 c 54 b 39 c 120o 3 b 26 c 15 c 30o 4 a 2 b 6 a 30o 两解 一解 两解 无解 练习 通过本节学习 我们一起研究了正弦定理的证明方法 同时了解了向量的工具性作用 并且明确了利用正弦定理所能解决的两类有关三角形问题 已知两角一边 已知两边和其中一边的对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业补贴精准化研究-洞察与解读
- 全民核酸购销合同范本
- 人力资源投资合同范本
- 国庆主题班会活动方案
- 驾驶证续期办理指南与注意事项
- 高中班主任班级管理工作手册
- 幼儿园幼师专业发展培训方案与心得
- 基因家族起源假说验证-洞察与解读
- 注册监理工程师考试历年真题解析
- 消化疾病护理工作经验总结
- 2025年小学教育专升本真题解析题试卷(含答案)
- 临时展览搭建与施工方案
- 2025年10月自考13886经济学原理(初级)
- 2025天津宏达投资控股有限公司校园招聘18人笔试参考题库附带答案详解
- 2025年江苏省常州市辅警招聘考试题题库(含参考答案)
- 2025中数联物流科技(上海)有限公司招聘考试参考试题及答案解析
- 艾梅乙反歧视培训课件
- DB64-266-2018 建筑工程资料管理规程
- 在线网课学习课堂《人工智能(北理 )》单元测试考核答案
- GB/T 1.1-2020标准化工作导则第1部分:标准化文件的结构和起草规则
- GB∕T 19017-2020 质量管理 技术状态管理指南
评论
0/150
提交评论