数学人教版九年级上册二次函数综合复习课教案.doc_第1页
数学人教版九年级上册二次函数综合复习课教案.doc_第2页
数学人教版九年级上册二次函数综合复习课教案.doc_第3页
数学人教版九年级上册二次函数综合复习课教案.doc_第4页
数学人教版九年级上册二次函数综合复习课教案.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数综合复习课一、教学目标:(1)使学生进一步理解二次函数解析式的求法,通过例题讲解,使学生了解二次函数与已学过有关知识之间的联系(2)全面回顾平行四边形,相似形的判定,一元二次方程的解法。二、重点、难点:几何图形在二次函数中综合运用。三、教学过程:1、复习(1)、二次函数解析式的三种求法;(2)、平行四边形的判定、矩形的判定;(3)、一元二次方程的解法。2、例题分析与讲解:如图,已知二次函数的图象过点A(0,3),B(,),对称轴为直线x=,点P是抛物线上的一动点,过点P分别作PMx轴于点M,PNy轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP(1)求此二次函数的解析式;(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由考点:二次函数综合题3718684分析:(1)利用顶点式和待定系数法求出抛物线的解析式;(2)证明PCFOED,得CF=DE;证明CDMFEN,得CD=EF这样四边形CDEF两组对边分别对应相等,所以四边形CDEF是平行四边形;(3)根据已知条件,利用相似三角形PCFMDC,可以证明矩形PMON是正方形这样点P就是抛物线y=x2+x3与坐标象限角平分线y=x或y=x的交点,联立解析式解方程组,分别求出点P的坐标符合题意的点P有四个,在四个坐标象限内各一个解答:(1)解:设抛物线的解析式为:y=a(x+)2+k,点A(0,3),B(,)在抛物线上,解得:a=1,k=抛物线的解析式为:y=(x+)2=x2+x3(2)证明:如右图,连接CD、DE、EF、FCPMx轴于点M,PNy轴于点N,四边形PMON为矩形,PM=ON,PN=OMPC=MP,OE=ON,PC=OE;MD=OM,NF=NP,MD=NF,PF=OD在PCF与OED中,PCFOED(SAS),CF=DE同理可证:CDMFEN,CD=EFCF=DE,CD=EF,四边形CDEF是平行四边形(3)解:假设存在这样的点P,使四边形CDEF为矩形设矩形PMON的边长PM=ON=m,PN=OM=n,则PC=m,MC=m,MD=n,PF=n若四边形CDEF为矩形,则DCF=90,易证PCFMDC,即,化简得:m2=n2,m=n,即矩形PMON为正方形点P为抛物线y=x2+x3与坐标象限角平分线y=x或y=x的交点联立,解得,P1(,),P2(,);联立,解得,P3(3,3),P4(1,1)抛物线上存在点P,使四边形CDEF为矩形这样的点有四个,在四个坐标象限内各一个,其坐标分别为:P1(,),P2(,),P3(3,3),P4(1,1)点评:本题是二次函数综合题型,考查了二次函数的图象与性质、待定系数法、全等三角形、相似三角形、解方程、矩形、正方形等知识点,所涉及的考点较多,但难度均匀,是一道好题第(2)问的要点是全等三角形的证明,第(3)问的要点是判定四边形PMON必须是正方形,然后列方程组求解:练习:课后作业:如图,在坐标系xOy中,ABC是等腰直角三角形,BAC=90,A(1,0),B(0,2),抛物线y=x2+bx2的图象过C点(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l当l移动到何处时,恰好将ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由二次函数综合题如解答图所示:(1)首先构造全等三角形AOBCDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式;(2)首先求出直线BC与AC的解析式,设直线l与BC、AC交于点E、F,则可求出EF的表达式;根据SCEF=SABC,列出方程求出直线l的解析式;(3)首先作出PACB,然后证明点P在抛物线上即可解:(1)如答图1所示,过点C作CDx轴于点D,则CAD+ACD=90OBA+OAB=90,OAB+CAD=90,OAB=ACD,OBA=CAD在AOB与CDA中,AOBCDA(ASA)CD=OA=1,AD=OB=2,OD=OA+AD=3,C(3,1)点C(3,1)在抛物线y=x2+bx2上,1=9+3b2,解得:b=抛物线的解析式为:y=x2x2(2)在RtAOB中,OA=1,OB=2,由勾股定理得:AB=SABC=AB2=设直线BC的解析式为y=kx+b,B(0,2),C(3,1),解得k=,b=2,y=x+2同理求得直线AC的解析式为:y=x如答图1所示,设直线l与BC、AC分别交于点E、F,则EF=(x+2)(x)=xCEF中,CE边上的高h=ODx=3x由题意得:SCEF=SABC,即:EFh=SABC,(x)(3x)=,整理得:(3x)2=3,解得x=3或x=3+(不合题意,舍去),当直线l解析式为x=3时,恰好将ABC的面积分为相等的两部分(3)存在如答图2所示,过点C作CGy轴于点G,则CG=OD=3,OG=1,BG=OBOG=1过点A作APBC,且AP=BC,连接BP,则四边形PACB为平行四边形过点P作PHx轴于点H,则易证PAHBCG,PH=BG=1,AH=CG=3,OH=AHOA=2,P(2,1)抛物线解析式为:y=x2x2,当x=2时,y=1,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论