



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆的切线判定定理应用教学设计刘丽婷教材分析1、教材所处的地位和作用切线的判定是九年级上册第二十四章 “圆”中的内容之一,是在学完直线和圆三种位置关系概念的基础上进一步研究直线和圆相切的特性,是“圆”这一章的重点之一,是学习圆的切线长和切线长定理等知识的基础。2、教学内容“切线的判定和性质”共两个课时,为了突出本节课的重点、突破难点,而是依据学生认知特点,将切线的判定方法作为单独一课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,让教学呈现一个循序渐进、温过知新的过程。本节课主要有三部分内容:(1)切线的判定定理回顾(2)切线的判定定理的应用(3)总结切线的两种判定方法。教学重点是切线的判定定理及其应用。教学难点是切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。教学对象分析在学习本节内容之前学生已经掌握了圆的切线的定义,直线和圆的三种位置关系和一种直线与圆相切的判定方法(用d=r)。在学习用d=r来判定直线与圆相切的内容时曾为本节内容打过伏笔,设置过悬念,所以学生对本节内容的学习充满期待的。教学三维目标:知识与能力:1、回顾圆的切线判定定理。 2、知道判定切线常用的方法有两种,初步掌握方法的选择并能数学问题。过程与方法:运用圆的切线的判定定理解决数学问题的过程中,进一步培养学生运用已有知识综合解决问题的能力。情感态度与价值观:1、通过运用圆的切线的判定定理解决数学问题活动,拓宽解题思路,从而使学生能够灵活应用所学知识解决问题。2、借此形成知识体系,教育学生用动态的眼光、运动的观点对待生活。教学重点:切线的判定定理和切线判定的方法。教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径教学过程:一、复习提问学生回顾圆判定定理的内容:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。定理的符号语言:直线lOA,直线l经过半径OA的外端A直线l为O的切线。二、引入新课内容是非题:(教学意图:先通过直观的语言分析知识的内涵,让学生找到重点的所在。)1. 过半径的外端的直线是圆的切线( )2. 与半径垂直的的直线是圆的切线( )3. 过半径的端点与半径垂直的直线是圆的切线( ) 利用判定定理时,要注意直线须具备以下两个条件,缺一不可: (1)直线经过半径的外端; (2)直线与这半径垂直。三、例题讲解例1、已知:直线AB经过O上的点C,并且OA=OB,CA=CB。求证:直线AB是O的切线。(设计意图:给出第一种证明的类型,提高学生的分析能力)引导学生分析:由于AB过O上的点C,所以连结OC,只要证明ABOC即可。证明:连结OC. OA=OB,CA=CB, ABOC 又直线AB经过半径OC的外端C,直线AB是O的切线。针对练习1、如图,AB是O的直径, O过BC的中点D,DEAC.求证:DE是O是切线。 对比例2、已知:O为BAC平分线上一点,ODAB于D,以O为圆心,OD为半径作O。求证:O与AC相切。(设计意图:展现了切线的第二种证明类型,学生对比观察总结方法)证明:过O作OEAC于E。 AO平分BAC,ODAB ODAB于点D OEOD OD是O的半径 OE也是半径 AC是O的切线。针对练习:如图,AOB中,OAOB10,AOB=120,以O为圆心, 5为半径的O与OA、OB相交。求证:AB是O的切线四、对比总结:例1与例2的证法有何不同?(1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直。简记为:有交点,连半径,证垂直。(2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段为辅助线,再证垂线段长等于半径长。简记为:无交点,作垂直,证半径。五、课堂知识小结1切线的判定定理。切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。2证明一条直线是圆的切线的辅助线和证法规律。“有交点,连半径,证垂直”;“无交点,作垂直,证半径”。六、布置作业 课本:101页5题、102页11题和12题七、切线的判定教后体会本课例切线的判定以“教师为引导,学生为主体”的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。有以下几个成功与不足之处:成功之处:这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。不足之处:一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。二、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公楼宇日常运营维护协议
- 商务谈判准备工具包含策略及谈判技巧参考
- 客户体验培训课件模板
- 专业国学培训课件排名
- 2025年环保型玻璃器皿代理销售与推广合同
- 2025年度城市艺术教育培训基地音乐教师培养及聘用合同
- 2025年南美市场产品合规认证与市场开拓合作协议
- 2025版智能手机应用数据安全及隐私合规实施合同
- 2025年钟点工家庭园艺全案设计与四季养护服务合同
- 化工管材知识培训课件
- 结直肠癌肝转移外科治疗策略2025
- 打造国际化教育环境-学校的外部合作关系构建
- JJG(京) 47-2013 出租汽车计价器(行车测距法)检定规程
- 5.3 一元一次方程的应用 七年级数学北师大版(2024)上册课时优化训练(含答案)
- 医疗纠纷防范培训
- 资产并购咨询合同模板
- 字画作品买卖合同模板
- 人教PEP版小学英语五年级下册复习教案(全册)
- NB-T 33025-2020 电动汽车快速更换电池箱通.用要求
- 【小升初】2024-2025学年四川省成都市下学期新七年级分班真题数学试题(含答案)
- 广东省深圳市2022-2023学年八年级下学期英语期末试卷(含答案)
评论
0/150
提交评论