数学人教版九年级上册圆的性质---中考总复习.docx_第1页
数学人教版九年级上册圆的性质---中考总复习.docx_第2页
数学人教版九年级上册圆的性质---中考总复习.docx_第3页
数学人教版九年级上册圆的性质---中考总复习.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆课题圆的有关概念和性质课型复习课教法讲练结合教学目标1.了解圆及其相关结论概念, 认识圆的轴对称性和中心对称性2.掌握垂径定理,圆心角、弧、弦之间相等关系定理以及圆周角和圆心角关系定理.3.进一步认识和理解研究图形性质的各种方法.教学重点掌握垂径定理,圆心角、弧、弦之间相等关系定理以及圆周角和圆心角关系定理.教学难点理解体会研究图形性质的各种方法.教具学案、PPT教学过程一、【目标解读、把握中考】二、【知识梳理】 1.圆的有关概念和性质 (1) 圆的有关概念 圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径 (2)圆的有关性质 圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧弧、弦、圆心角、弦心距的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦、两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等 推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径三角形的内心和外心 :确定圆的条件:不在同一直线上的三个点确定一个圆 :三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心 :三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心 2.与圆有关的角 (1)圆心角:顶点在圆心的角叫圆心角。圆心角的度数等于它所对的弧的度数 (2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。圆周角的度数等于它所对的弧的度数的一半 (3)圆心角与圆周角的关系: 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半 (4)圆内接四边形:顶点都在国上的四边形,叫圆内接四边形 圆内接四边形对角互补,它的一个外角等于它相邻内角的对角三、【经典考题剖析】 1.如图,在O中,已知A CBCDB60 ,AC3,则ABC的周长是_.2.“圆材埋壁”是我国古代九章算术中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”用数学语言可表述为如图,CD为O的直径,弦ABCD于点E,CE1寸,AB=10寸,则直径CD的长为( ) A125寸 B13寸 C25寸 D26寸3.如图,已知AB是半圆O的直径,弦AD和BC相交于点P,那么等于( ) AsinBPD BcosBPD CtanBPD DcotBPD4.O的半径是5,AB、CD为O的两条弦,且ABCD,AB=6,CD=8,求 AB与CD之间的距离5.如图,在M中,弧AB所对的圆心角为1200,已知圆的半径为2cm,并建立如图所示的直角坐标系,点C是y轴与弧AB的交点。(1)求圆心M的坐标;(2)若点D是弦AB所对优弧上一动点,求四边形ACBD的最大面积四、【课后训练】 1.如图,在O中,弦AB=18。m,圆周角ACB=30 ,则 O的直径等于_cm2.如图,C是O上一点,O是圆心若=35,则AOB的度数为( ) A35 B70 C105 D150 3.如图,O内接四边形ABCD中,AB=CD则图中和1相等的角有_ 4.在半径为1的圆中,弦AB、AC分别是和,则 BAC的度数为多少5.如图,弦AB的长等于O的半径,点C在上,则C的度数是_. 6.如图,四边形 ABCD内接于O,若BOD=100,则DAB的度数为( ) A50 B80 C100 D1307.如图,四边形ABCD为O的内接四边形,点E在CD的延长线上,如果BOD=120,那么BCE等于( ) A30 B60 C90 D1208.用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形( )9.如图,O的直径AB=10,DEAB于点H,AH=2 (1)求DE的长; (2)延长ED到P,过P作O的切线,切点为C,若PC=22,求PD的长10.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4,求这个圆形截面的半径.五、【课后小结】布置作业综合训练册同步教后反思1、通过解决系列小问题对相应知识点进行梳理复习课要把旧知识进行整理归纳,这一过程,就是将平时相对独立的知识点串成线,连成片,结成网。如果教师对复习问题面面俱到,学生会感到乏味,引不起兴趣,往往不能深入思考,张口就来,老师成了课堂的主角,学生则是被动接受,老师感到累而学生思维受到限制。因此,在课堂上通过问题的解决整理归纳学过的知识,把学习的主动权交给学生,取得效果较好。2、提炼方法形成知识结构圆的对称性有什么特点,由此得到什么定理?定理的使用范围是什么?通过解题后的反思提炼方法,形成知识结构,加深了对定理的理解。复习不是知识的简单再现,在复习过程中,教师也应是坚持启发引导学生发现思维误区,总结方法为主,辅之以精讲。充分发扬教学民主,给学生以足够的思维空间,对于解题思路的探讨过程,让学生真正理解,从而提高复习质量和复习效率。3、变式训练提高能力复习中,教师要树立创新的观念,对基础知识和基本练习题的复习要运用一题多拓,培养思维和深刻性,防止就知识复习知识,就题论题,满足于会解层面上;引导学生一题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论