数学人教版九年级上册如何确定二次函数的解析式教学设计.doc_第1页
数学人教版九年级上册如何确定二次函数的解析式教学设计.doc_第2页
数学人教版九年级上册如何确定二次函数的解析式教学设计.doc_第3页
数学人教版九年级上册如何确定二次函数的解析式教学设计.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

如何确定二次函数的解析式的教学设计第四中学:龚 锋一、指导思想与理论依据(一)指导思想:本次课的教学设计以新课程标准关于数学教学的核心理念为基本遵循,坚持以教师为主导,以学生为主体,以培养能力为基准,采取符合学生学习特点的多样式的学习方法,通过教学内容和教学过程的实施,帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,促进学生学会用数学的思考方式解决问题、认识世界(二)理论依据: 1、教学中注意沟通各部分之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的联系,感受数学的整体性,进一步理解数学的本质,提高解决问题的能力2、在教学中,关注学生的学习态度、学习方法、学习习惯。二、教学背景分析(一)学习内容分析“待定系数法”是数学思想方法中的一种重要的方法,初中阶段要求学生初步学会用待定系数法求函数解析式;因此这节课的学习既是初中知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用 (二)学生情况分析对于初三学生来说,在学习完一次函数后继续学习用待定系数法求函数解析式,学生已经具备了更多的函数知识,同时,初三的学生已经具备了一定的分析问题、解决问题能力和创新意识,这些对本节课的学习都很有帮助. (三)教学方式与教学手段、技术准备以及前期的教学状况、问题、对策说明围绕本节课所学知识,我设置具有挑战性的开放型问题,采用让学生多角度地自己给出合适的已知条件,并自己解决问题的教学模式,激发学生积极思考,引导学生自主探索与合作交流,提高解决问题的能力,培养一定的创新意识和实践能力 教学目的:理解求二次函数解析式的方法及步骤;掌握二次函数解析式的三种形。通过复习归纳,使学生经历结合所给条件灵活选择二次函数解析式的形式,达到简便运算,提高学生分析、探索、归纳、概括的能力。让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。教学重难点:重点:会根据不同的条件,利用待定系数法求二次函数的函数关系式。难点:在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质解决生活中的实际问题。教学过程 (一)引入新课函数关系式中有几个独立的系数,需要有相同个数的独立条件才能求出函数关系式在确定一次函数的关系式时,通常需要两个独立的条件,确定反比例函数的关系式时,通常只需要一个条件,在确立正比例函数的解析式时,也只要一个条件就行了。若要确定二次函数的解析式,则需要几个条件?(二)进行新课例1、已知抛物线yax2bxc(a0)的图像如图所示,求抛物线的解析式? 解法一:,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。解法二: 已知抛物线与x轴的两个交点坐标时,可选用二次函数的交点式:ya(xx1)(xx2),其中x1,x2为两交点的横坐标。解法三:已知抛物线的顶点、最值、对称轴时,可选用二次函数的定点式:ya(xh) 2+k, 其中h,k为顶点坐标。小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。难点,抛物线与x轴的两个交点坐标。例2、将抛物线 yax2bxc(a0)向左平移4个单位,再向下平移3个单位,求平移后所得抛物线的解析式小结:关键记住口诀:“左加右减,上加下减”(三)体现自我1、由学生分组讨论,合作交流自己完成。2、同时,让学生演板,尝试完成。3、教师与学生一起进行点拨。(四)小试牛刀、已知二次函数yax2bxc与x 轴的交点坐标为(-1,0),(1,0),点(0,1)在图像上,求其解析式。2、已知二次函数yax2bxc的图像过原点,当x=1时,y有最小值为-1,求其解析式。3、将二次函数 y2(x+1) 2 -3的图像向右平移1个单位,再向上平移4个单位,求其解析式。点拨:让学生思考每道题只有一种方法吗?不同的方法看哪种更简单。(五)总结1、二次函数解析式常用的有三种形式:(1)一般式:_。(a0)(2)顶点式:_。(a0)(3)两根式:_。(a0)2、本节课是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式:(1)当已知抛物线上任意三点时,通常设为一般式yax2bxc形式。(2)当已知抛物线的顶点坐标(或能求出顶点坐标)、对称轴、最值等与抛物线上另一点时,通常设为顶点式ya(xh) 2k形式。(h、k分别是顶点的横坐标与纵坐标)(3)当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式ya(xx1)(xx2)。(其中x1、x2是抛物线与x轴两交点的横坐标)3、求二次函数解析式的思想方法待定系数法、配方法、数形结合等教学反思:1、求函数解析式是初中数学主要内容之一,求二次函数的解析式在中考压轴中题固定出现。在求函数的解析式时,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐,甚至解不出题来。 2、教学中,要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律。最后,教师清楚地向学生总结每一种函数解析式的适

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论