



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.2 一次函数19.2.1 正比例函数【知识与技能】1.初步理解正比例函数的概念及其图象的特征.2.能够画出正比例函数的图象.3.能够判断两个变量是否能够构成正比例函数关系.4.能够利用正比例函数解决简单的数学问题.【过程与方法】1.通过实例,体会建立数学模型的思想.2.通过正比例函数图象的学习与研究,感知数形结合思想.【情感态度】结合描点作图,培养学生认真、细心、严谨的学习态度.【教学重点】正比例函数的概念、图象与性质.【教学难点】正比例函数的特征.一、情境导入,初步认识请学生预习、自学教材,并讨论课本“思考”的问题.【答案】(1)l=2r;(2)m=7.8V;(3)h=0.5n;(4)T=-2t.观察这些解析式有什么共同特点?由学生讨论,教师总结.一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中k叫做比例系数.请学生列举日常生活中的正比例函数的模型,举例如下:(1)利率不变的情况下,利息随存款数的变化而变化.(2)某本书的单价不变,销售额随售出图书数量的变化而变化.(3)火车速度不变,行驶距离随时间的变化而变化.(4)单位千克邮价不变,邮费随邮包重量的变化而变化.例1 已知y=(k+1)x+k-1是正比例函数,求k的值.【分析】联想正比例函数定义可知,应用时考虑k+10,k-1=0,综合可得k=1.【教学说明】这类问题看三点:(1)自变量的最高次数为1;(2)含自变量x的系数k0;(3)常数项为0,三者必须同时满足.例2 根据下列条件求函数的解析式.(1)y与x2成正比例,且x=-2时,y=12.(2)函数y=(k2-4)x2+(k+1)x是正比例函数,且y随x的增大而减小.【分析】(1)根据正比例函数的定义,可设y=kx2,再由x=-2,y=12代入求得k值;(2)注意题中要求,及式子特点,结合定义与性质考虑.解:(1)设y=kx2(k0),把x=-2,y=12代入得(-2)2k=12,k=3,即y=3x2.(2)由题意得:k2-4=0,k=2或k=-2.又y随x的增大而减小,k+10.故k=-2,即y=-x.【教学说明】(2)中含有自变量x的二次方,由题意知解析式应不含二次项,故令其系数为0.二、思考探究,获取新知师生共同画出y=x,y=-x的图象,并鼓励学生探索图象特征,引导学生归纳的结果围绕以下几个方面:(1)两图象都是经过原点的直线.(2)函数y=x的图象从左向右递增,经过一、三象限.(3)函数y=-x的图象从左向右递减,经过二、四象限.教师总结正比例函数的图象与性质:一般地,正比例函数y=kx(k是常数,k0)的图象是一条经过原点的直线,当k0时,直线过第一、三象限,y随x的增大而增大;当k0时,直线过第二、四象限,y随x的增大而减小.例1 已知正比例函数的图象过点(2m,3m),m0,求这个正比例函数的解析式.解:设正比例函数的解析式为:y=kx.把(2m,3m)代入得3m=k2m,解得k=.解析式为y=x.【教学说明】正比例函数中只含有一个待定系数,只需知道一点坐标即可求得其解析式.例2 已知(x1,y1)、(x2,y2)是直线y=-x上的两点,若x1x2,则y1,y2的大小关系是( ).A.y1y2 B. y1y2 C. y1= y2 D.不能比较【分析】因为y=-x中-0,即直线y=-x的函数值是随x的增大而减小的,所以当x1x2时,y1y2,故选A.【教学说明】通常我们在x的某一范围内取x1x2,若点(x1,y1),(x2,y2)为函数图象上的两点,当y1y2时,该函数在这个范围内y随x的增大而增大;当y1y2时,该函数在这个范围内y随x增大而减小.三、运用新知,深化理解1.已知正比例函数y=(k+3)x.(1)k为何值时,函数的图象经过一、三象限.(2)k为何值时,y随x的增大而减小.(3)k为何值时,函数图象经过点(1,1).2.已知y-3与x成正比例,当x=2时,y=7,求y与x之间的函数解析式.3.在函数y=-3x的图象上取一点P,过P点作PAx轴,已知P点横坐标为-2,求POA的面积(O为坐标原点).【教学说明】以上各题由学生自主探究,有疑问的教师加以指导,最后评析.【答案】1.(1)k-3;(2)k-3; (3)k=-2.2.设y-3=kx,当x=2时,y=7,代入得7-3=2k,k=2,即y-3=2x,则y=2x+3.3.点P在函数y=-3x的图象上,且P点的横坐标为-2,y=-3(-2)=6,即P点的坐标为(-2,6).SPOA=1226=6.四、师生互动,课堂小结问题1.什么是正比例函数?其解析式是什么?2.正比例函数的图象是什么?它有什么特征?3.如何简便地画出正比例函数的图象?4.本节课的学习经历了怎样的过程?你有何感悟?1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.因从本课时开始,学生将逐渐认识并理解各类具体的函数图象,一般的基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征,结合学生已有的知识与经验和后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融员工保密及竞业协议书9篇
- 租赁合同转租合同2篇
- (NEW)房产买卖补充合同7篇
- 北海环翰电子科技有限公司电子产品保税维修进料加工项目环境影响报告表
- 理论安全知识保安培训课件
- 电站增容改造工程方案(3篇)
- 农业电商新机遇:2025年高端定制农产品商业模式研究报告
- 球磨工安全培训课件
- 飞翔公园拆除工程方案(3篇)
- 广西钦州销售分公司海灵加油站建设项目环境影响报告表
- 《毛利分析》课件
- 工业园区弱电工程承包合同范本
- 安徽省蚌埠市重点中学2025届物理高二上期末学业质量监测模拟试题含解析
- 医院医保新员工岗前培训
- 静脉治疗护理技术操作标准解读
- 突发公共卫生事件校长为第一责任人制度
- 北师大版高中英语让学生自由飞翔
- (2024)新课标一年级语文上册 我上学了 第2课时 我爱我们的祖国 课件
- 手工木工(木模板工)技能考核要素细目表
- 《跨境直播运营》课件-跨境电商交易平台直播
- 液化气店转让合同范本
评论
0/150
提交评论