数学人教版七年级下册初中人教版2011版七年级下第六章实数.doc_第1页
数学人教版七年级下册初中人教版2011版七年级下第六章实数.doc_第2页
数学人教版七年级下册初中人教版2011版七年级下第六章实数.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学段初中年级七年级学科数 学单元第6单元课题6.3实数(1)课型新授主备学校初审人终审人主备人合作团队课标依据1、了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。2、能用有理数估计一个无理数的大致范围教学目标1. 了解无理数和实数的概念2.会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3.了解实数范围内相反数和绝对值的意义教学重点正确理解实数的概念教学难点理解实数的概念; 体会数轴上的点与实数是一一对应的.导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标用小黑板呈现本节课的学习目标,并让学生诵读自主学习温故知新22、是这样的数么?互助释疑21、什么是有理数?如何分类?(板书)探究出招21探究:使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , , , , , 我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 , , , , ,归纳: 任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数.(板书)讨论:是不是有理数呢?为什么?归纳:不是整数,不是有限小数,也不是无限循环小数,所以不是有理数.是无限不循环小数(板书:无限不循环小数).定义:无限不循环小数又叫无理数,也是无理数结论: 有理数和无理数统称为实数 学生举例:有理数 无理数 整理:如:填空: 在-19,3.878787,1.414,这些数中,有理数是 ; 无理数是 ;【活动2】我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?探究 1. 1.如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O的坐标是多少?OO2.总结: 事实上,每一个无理数都可以用数轴上的_表示出来,这就是说,数轴上的点有些表示_,有些表示_当从有理数扩充到实数以后,实数与数轴上的点就是_的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的_都是表示一个实数 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数_讨论: 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数的相反数是_,这里表示任意_。一个正实数的绝对值是_;一个负实数的绝对值是它的_;0的绝对值是_自学探究展示交流小组展示2小组内交流如何在数轴上表示一个无理数。班级展示2每组选派一名代表在本组的展示板上展示如何在数轴上表示。点拨升华反馈矫正1教师就学生的展示点拨扩展提升3课本P55例1总结提高2无理数的特征:1圆周率及一些含有的数 2开不尽方的数3有一定的规律,但不循环的无限小数注意:带根号的数不一定是无理数课堂作业达标训练5课本p56练习第1、2、3题和导学案第1、2、3、7题毛挑战自我5对应配套练习板书设计目标:1. 了解无理数和实数的概念2.实数分类3.了解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论