机械毕业设计40英文翻译外文文献翻译134.docx

机械毕业设计40英文翻译外文文献翻译134

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:531246    类型:共享资源    大小:481.88KB    格式:ZIP    上传时间:2015-11-25 上传人:QQ28****1120 IP属地:辽宁
6
积分
关 键 词:
机械毕业设计英文翻译
资源描述:
机械毕业设计40英文翻译外文文献翻译134,机械毕业设计英文翻译
内容简介:
附录 A 论述压痕测试法和原子力显微镜的 SI可跟踪力计量学 摘要 :本文论述压痕测现状试法和原子力显微镜( AFM)的微小力计量学的现状并特别针对全国科学与技术研究会( NIST)提出的新的电力和自重力的标准。这些标准提供计量学的基础结构所以压痕测试法和原子力显微镜的使用者可根据国际上认可的计量单位表示的力对材料,工作表面和纳米设备进行微机械测试。 关键字:原子力显微镜,压痕测试法,微小力校准 1.SI计量学和可追踪性 国际单位系统( SI)的计量等级是很简单的。国家计量院( NMIS)维持着反映实际物体计量单位的原始标准。 NMIS校准 secondary artifacts.这些 secondary artifacts和 transfer artefacts传播与 NMI,而且校准其他的传感器和仪器,他们反过来校准其他的传感器和仪器。每个校准与原始标准有换算关系,在传递结束后为了确保单位的实际值,随着单位从一个设备传到另一个设备的误差在每个阶段被估计。这是 SI传 递的基本。 力派生与国际单位制,这意味着力的原始标准起源于由 SI的基本单位( kg,m,s)组成的牛顿的定义。力的原始标准是由质量 artefact与适当的长度和时间的单位表示的当地的地心引力组成的。这类里是根据重力的名称而来的,很多根据重力另传感器测力的机器被发明了。事实上,由于测试材料和工业产品时力的测量标准的原因, NIST仍保持着静重式力标准机,在美国这些机器在力的计量等级上起着重要的作用。同样,世界上很多其他国家计量院( NMIS)留用重力测量设备。对这些设备进行相互比较,即几个 NMI轮流校准相同高稳定度的 secondary artifact 形成相互承认的排列,这些排列保证了统一的国际测量标准而且给商业和贸易带来了方便。 2.微机械测试,标准和力的计量法 微机械的特性测试技术的应用刺激了压痕测试法和原子力显微镜的测量法和校准标准的发展,如附着力,硬度 弹性模量,薄膜,涂料,微机电设备和系nts统,纳米材料的扩展阵列。这些机械特性大部分是由压痕测试法和原子力显微镜对力和位移的测量测出来的,利用摩擦计和张力计研制出了功能相似的测量法 2.1国际标准 近几年,压痕技术扩展到更小的力和位移的领域。通 过分析这些力 -位移数据可以测定出样品的硬度和弹性模量。这种测量方式通常被称为 instrumented或压痕深度检测。当用于微小力和深度测量时这种技术被称为纳米压痕测试。位移分辨率大于 1nm,力的分辨率大于 1N是纳米压痕测试的特征。仪器和数据分析的进步另纳米压痕测试法能测量材料非常细微的力学性能,特别是对薄膜和涂料如汽车涂料,增加切断刀具寿命的 TIN涂料,计算机硬盘驱动曲面。如果厂家生产用一种纳米压痕测试法规格测量的刀具的话市场上会出现混乱,因为目前只有一种国际测试标准(美国没有)使用于纳米压痕测试,而且检 验这种测试仪器的程序目前还不充分。有一种被认可的国际标准( ISO/DIS 14577-1, 2, 3)称为金属材料 -硬度和材料参数的压痕测试,但它只使用于大批材料的测试。涉及薄膜测试的文件的第四部分( ISO/DIS 14577-4)还没有被认可。 2.2微机械的计量学 受到以上标准化工作的影响 NMI开始研究国际单位制框架内可追踪的可以测量和传播微小力的方法。在这里我们对这些工作做简单的综述。本文仅仅是为了提供目前技术发展水平的情况。 从纳到微级的我们的工作,用静电力秤( EFB)得到的 10-8 N 到 104 N的力已经得到 NIST的认证而且用于校准 secondary force artifact基于 Veeco,Inc.,而且随后被 Asylum Research Molecular Force Probe所用,因此说明原子力显微镜材料测试仪器的校准是符合国际单位制的。 除了美国,在英国的国家物理实验所研制出了另一个静电力秤系统,此系统可以令 NIST EFB得到改进,预计 2005年的九月可以实现。同时,德国的 PTB也研制了 cantilever-type force cells 基于压阻应变传感,这 些设备与测力计和刚度计一样得到了校准。 在更高的量级,从几百微牛顿到几百万牛顿, NMI正研制基于自重力的原始力校准系统。 PTB利用传统的电子秤的秤盘上的精确的压力传感器。两个系统已经宣布,这种秤是根据力的范围进行分类。 NIST利用重力对力传感器进行校准,nts这个传感器是我们曾用以证明压痕力的力的单元,我们也建立和测试了自己设计的基于电容的力单元。 3 NIST的 SI可传递的微小力的等级 为了利用国际单位制对牛顿的定义了解力的单位,力必须由国际单位制的基本单位组成的单位来表示。从基本单位获得单位通常是不确定度最小 的途径,但这并不是唯一的方法,例如,电子力可以由国际单位制的长度单位结合适当的电的单位测量。电的单位从国际单位制获得,也可以由基于约瑟夫效应和量子霍而效应的伏特和欧姆表示,所以它可以由很多种不确定度很小的力学测量方法,这与质量的情况不一样,力的电子显示方法有用瓦特秤的电磁力和用伏特秤的电工力。虽然这些秤实验最初是想用力学量单位对电子单位下定义,但是量为基础的电子标准的可行性让这些秤实验代替了公斤。承认基本的计量学趋势,基于电子力的原始标准的发展曾是 NIST做小力计量学实验室的主要的目标。图 1用基于小于 10-5N的力的由长度,电容,电压组成的单位表示的力表示了 NIST微小力计量学的计量等级。我们从对电子力的描述和如何与自重力核对考试。接下来的是关于能连接电子力的力的单位的传播。最后我们用对更大规模的自重力系统的简单论述和它的为证实从压痕检测仪器测出的力校准传播导出量的使用下结论。 3.1 10-8N到 10-4N的微小力的原始标准: NIST的电子力秤。 在 NIST,我们从电力学了解了微小力的原始标准,而且为了用电容器的布置了解力建造了一系列不断精致的系统。根据图 2,图 3的 NIST电子力秤和 EFB可以对原始标准说明,从图中可以看到,这个秤安装在直径大约为 1m的专门设计的真空室里的专用的安装台上。 EFB安装在安装台上的三条腿上,三条腿从真空室地板伸出通过可伸缩的到空的凸缘的风箱。这些安装台的腿由真空室下面的花岗岩支撑,如图 3所示。因而,真空室和设备是通过风箱接触的。这个实验可以在空气或惰性气体里进行,但是在真空中进行可以避免空气的对流对敏感的秤的悬架的影响。而且在真空中进行实验减小折射量的调整和另电容的间隙保持不变。EFB由一个电子力发生器组成,它能沿垂直轴移动( Z轴);根据当地的地心引力调整,当电压 传到一对同轴的圆柱体时力就会产生。当内部的圆柱体沿 Z轴移动时外部的高电压圆柱体会固定不动,改变重叠的程度。电容的大小随着两个圆柱体的重叠程度而变化。因为同轴的布置,内表面的电容倾斜度完全对称,所以产nts生的电子力指向 Z轴,为了保证轴的对称,内部的圆柱体悬挂在有一系列弯曲轴的平衡力平行四边形连接装置。这个装置提供准确运动的轴,方便地根据重力进行调整,对非轴向力不敏感,做涨力实验时轴向硬度达到 0.001Nm-1。 3.2用 EFB校准力 在传统的力的等级,测力传感器是与应变仪安装的,应变仪使力的变化转换成电阻的变化。 在这个力的等级, AFM的悬臂作成压阻的模式,这样就成了应变仪的半导体,所以这些悬臂功能上与测力传感器是一样的。压电 AFM悬臂不是规范,很少的样本能够通过商业获取。但这样的装置可以通过使用常用的半导体制造技术获得。 附录 Review of SI traceable force metrology for instrumented indentation and atomic force microscopy and Douglas T Smith Abstract: This paper reviews the current status of small force metrology for quantitative instrumented indentation and atomic force microscopy (AFM), and in particular focuses on new electrical and deadweight standards of force developed at the National Institute of Standards and Technology (NIST). These standards provide metrological infrastructure so that users of instrumented indentation and AFM can achieve quantitative nanomechanical testing of materials, engineered surfaces and micro and nanoscale devices in terms of forces that are expressed in internationally accepted units of measure with quantified uncertainty. Keywords: atomic force microscopy, instrumented indentation, micronewton/nanonewton force calibration 1. SI metrology and traceability The hierarchy of metrology within the International Systemof Units (SI) is conceptually ntssimple: primarystandards thatreflect a practical physical realization of a unit of measure aremaintained bynationalmeasurement institutes (NMIs) wherethey are used to calibrate secondary artefacts; these secondaryor transfer artefacts are disseminated from the NMI and usedto calibrate other sensors or instruments, which in turn areused to calibrate yet other sensors and instruments. Eachcalibration is a comparison back to the primary standard, andtheuncertainty associated with propagating the unit from onedevice to the next is evaluated at each step in order to placebounds on the actual value of the unit after its propagationthrough this chain. This is the essence of the SI traceability.Force is a derived unit in the SI, meaning that primarystandards of force are derived from the definition of the newtonusing a combination of base SI units (kg, m and s). Typically,a primary standard of force is fashioned from a traceable massartefact combined with a suitably accurate estimate of the localgravity expressed in appropriate units of length and time. Thistype of force is referred to by the name deadweight, and avariety of schemes and machines have been devised that usedeadweights to apply known forces to sensors. In fact, becauseof the importance of force measurement standards to the testingof materials and manufactured products, deadweight machinesare maintained at NIST 1, and these machines sit atop thehierarchy of force metrology in the United States. Likewise,many other NMIs around the globe maintain deadweightforce calibration facilities. Round robin comparisons betweenfacilities, where several NMIs take turns calibrating thesame highly stable secondary artefact, form the basis ofmutual recognition arrangements. 2. Nanomechanical testing, standards andforce metrology The development ofmeasurement and calibration standards forinstrumented indentation and AFM is largely motivated by thegrowing use of nanomechanical testing to evaluate propertiessuch as adhesion, hardness and elastic modulus of chemicallyengineered surfaces, thin films and coatings, microelectromechanicaldevices and systems and an expanding arrayof nanostructured materials 2. Most of these mechanicalproperties are evaluated from force and displacementmeasurements recorded using either instrumented indentationor atomic force microscope (AFM)-based materials testinginstruments. Functionally similar measurements (e.g., forcedisplacement data) are also made using surface forcesapparatus 3, tribometers and tensiometers, as well as otherinstruments 4. nts2.1. International standards In recent years, indentation techniques have been extendedto significantly smaller applied forces and displacements.Analyses of these forcedisplacement data permit thedetermination of both the specimen hardness and the elasticmodulus 5. This type of measurement is commonly referredto as instrumented or depth-sensing indentation. When usedat small forces and depths, the technique is referred to asnanoindentation. Displacement resolution greater than 1 nmand force resolution larger than 1 N is the characteristicof nanoindentation, with mechanical property informationobtained at indentation depths as small as 10 nm.Improvements in instrumentation and data analysis havemade nanoindentation the method of choice for measuringthe mechanical properties of very small volumes of material,particularly for thin films and coatings such as auto paint,TiN coatings for extending the life of cutting tools andsurface films on computer hard disk drive surfaces. Problemsarise in the marketplace if a manufacturer tries to makeproperties measured by nanoindentation part of a productspecification, because there is currently only one internationalstandard test method (and none in the United States) forperforming the nanoindentation tests, and procedures forverifying the performance of such testing machines arepresently inadequate. There is an approved internationalstandard in ISO (ISO/DIS 145771, 2, 3) entitled metallicmaterialsinstrumented indentation test for hardness andmaterials parameters but it deals solelywith the testing of bulkmaterials. A fourth part of the document (ISO/DIS 145774),which deals specifically with the testing of thin films. 2.2. Fundamental force metrology for nanomechanics Motivated by the above standards work, the NMIs have startedto investigate methods for realizing and disseminating smallforce in a fashion that is traceable within the establishedframework of SI units. We offer a brief overview of theseefforts in this section. The review is not complete and ismerely intended to provide an indication of the current stateof the art.Beginning with our own work in the nano to micro range,a primary realization of force in the regime between 108 Nand 104 N based on an electrostatic force balance (EFB)has been demonstrated at NIST 11 and used to calibratea secondary force artefact based on a Veeco, Inc.1, contactmode piezolever AFM cantilever 12. This secondary artefact was subsequently employed to calibrate an Asylum ResearchMolecular Force Probe, thereby demonstrating the first suchcalibration of an AFM materials test instrument to preserve ntsanunbroken link to the SI 13.Outside the United States, another electrostatic balancesystem has been proposed and designed at the NationalPhysical Laboratory (NPL) in the United Kingdom. Thisbalance promises improvements in resolution over the NIST1 Commercial equipment and materials are identified in order to adequatelyspecify certain procedures. In no case does such identification implyrecommendation or endorsement by the National Institute of Standards andTechnology, nor does it imply that the materials or equipment identified arenecessarily the best available for the purpose. EFB 14 and is expected to be operational in September 2005.Also at NPL, work has been reported on a spring constantartefact 15, and a micro-electromechanical spring balancethat may yield a traceable spring constant 16. Meanwhile,the Physikalisch-Technische Bundesanstalt (PTB) in Germanyhas developed active cantilever-type force cells based onpiezoresistive strain sensing 17. These devices have beencalibrated both as force cells and stiffness artefacts.At larger force levels, ranging from hundreds ofmicronewtons up to several millinewtons, NMIs aredeveloping primary force calibration systems based ondeadweights. PTB uses a precision scan stage to press sensorsagainst the weighing pan of a conventional electromagneticcompensation balance 18. Two different systems have beenreported, the size of balance employed depending on the forcerange of interest 19. NIST has used wire deadweights tocalibrate a modified force transducer as a transfer standardfor instrumented indentation 20. This sensor is one of asmall number of force cells that we have attempted to use forindentation force verification 21. We have also built andtested capacitance-based force cells of our own design 22. nts3. SI traceable hierarchy of small force at NIST In order to realize the unit of force using the SI definition ofthe newton, the observed force must be expressed in termsof measured quantities that are themselves expressed in termsof some combination of the SI base units. Deriving a unitfrom realizations of the base units is typically the path ofleast uncertainty, but this need not always be the case. For instance, electrical forces may be measured in terms of the SIunit of length in combination with appropriate electrical units.Electrical units are themselves derived units in the SI, butthey may also be linked to practical representations of the voltand ohm based on the Josephson and quantized Hall effects.Because of this, theymay be measured through a large dynamicrange with little loss of relative uncertainty, unlike the situationwith mass. Electrical realizations of force may be achievedusing electromagnetic forces, along the lines of watt balanceexperiments 23, 24 or using electrostatic forces, along thelines of volt balance experiments 25. Although such balanceexperiments were originally conceived to define electricalunits in terms of SI mechanical quantities, the availability ofquantum-based electrical standards has placed these balanceexperiments at the forefront of efforts to replace the kilogram26. Acknowledging this trend in fundamental metrology, thedevelopment of a primary standard based on electrical forcehas been a central goal of the NIST small force metrologylaboratory from its conception 27.The block diagram of figure 1 lays out a proposedhierarchy of NIST small force metrology, with a primaryrealization of force based on a combination of length,capacitance and voltage for forces below 105 N.We begin thesection with a description of the electrostatic force realizationand how it is checked against the deadweight force. Theproblem of disseminating the unit of force through appropriatetransfer artefacts that can interface with the electrostatic forceis treated next. Finally, we conclude the section with a briefreview of our larger scale deadweight system and its use inthe calibration of a transfer artefact for the verification of theforce readout of instrumented indentation equipment. 3.1. A primary standard of small force between 108 N and104 N: the NIST electrostatic force balance At NIST, we realize a primary standard of small force fromelectrostatics, and have constructed a series of increasinglyrefined systems to realize force using a coaxial cylindricalcapacitor arrangement 11, 28. The present version of thisprimary standard, referred ntsto as the NIST electrostatic forcebalance, or simply the EFB, is shown in the photo of figure 2and schematically in the drawing of figure 3. As shown in the photo and drawing, the balance has beenassembled on a custom optical table in a specially designed freestanding vacuum chamber approximately 1min diameter. Theoptical table on which the EFB is mounted sits on three legsthat protrude from the chamber floor through flexible bellowsthat terminate in blank flanges. These table legs are supportedfrom below the chamber by a large granite block, as indicatedschematically in figure 3. Thus, the only contact between thevacuum chamber and the experiment is through the relativelycompliant bellows. The experiment can operate in air, or withanother inert gas, but vacuum operation eliminates convectiveair currents that tend to perturb the large and compliant balancesuspension. Also, operation in vacuum eliminates the need tocorrect for the index of refraction in the interferometer anddielectric constant of the gap in the capacitance.Functionally, the EFB consists of an electrostatic forcegenerator that acts along a vertical axis (the z-direction) ntsalignedwith the local gravity to within a few milliradians 11. Forcesare generated when voltages are applied to the pair of nested,coaxial cylinders (items 3 and 4, figure 3). The outer highvoltagecylinder is fixed while the inner electrically-groundedcylinder is free to translate along the z-axis, varying thedegree of the overlap. The capacitance of this geometryis in principle a linear function of the overlap of the twocylinders. For a perfectly coaxial arrangement, the in-planecapacitance gradient possesses radial symmetry, so that the 3.2. Force calibration using the EFB At conventional force levels, force cells are equipped withstrain gauge transducers that convert changes in mechanicalforce to changes in electrical resistance. At the forcelevels considered here, AFM cantilevers can be dopedwith piezoresistive patterns that achieve the semiconductorequivalent of a strain gauge transducer, so that these cantileversare functionally equivalent to a force cell. Piezoresistive AFMcantilevers are not the norm and few examples are availablecommercially, but such devices can be made using commonsemiconductor fabrication techniques nts References 1 Jabbour Z J and Yaniv S L 2001 The kilogram and themeasurements of mass and force J. Res. Natl Inst. Stand.Technol. 106 25 2 Bhushan B (ed) 2004 Handbook of Nanotechnology(Heidelberg: Springer) 3 Israelachvili J 1992 Intermolecular and Surface Forces2nd edn (Boston, MA: Academic) 4 Joyce S A and Houston J E 1991 A new force sensorincorporating force-feedback control for interfacial forcemicroscopy Rev. Sci. Instrum. 62 710 5 Oliver W C and Pharr G M 1992 An improved technique fordetermining hardness and elastic modulus using load anddisplacement sensing indentation experiments J. Mater. Res.77 1564 6 VanLandingham M R, Villarrubia J S and Meyers G F 2000Nanoindentation of polymers: an overview ACS Polym.Preprints 41 1412 7 Hsu S 2004 Private communication, Chair VAMAS TWG 29,see the VAMAS website 8 Lawall J and Kessler E 2000 Michlelson interferometry with10 pm accuracy Rev. Sci. Instrum. 71 2669 9 Villarrubia J 1996 Scanned probe microscope tipcharacterization without calibrated tip characterizers J. Vac.Sci. Technol. B 14 1518 10 ISO group TC 164/SC 3/WG 1 and ASTM E28.06.11 2002Metallic MaterialsInstrumented Indentation Test forHardness and Materials Parameters ISO/DIS 14577-1, 2,and 3 11 Newell D B, Kramar J A, Pratt J R, Smith D T andWilliams E R 2003 The NIST microforce realization andmeasurement project IEEE Trans. Instrum. Meas. 52 50812 Pratt J R, Newell D B, Kramar J A, Mulholland J andWhitenton E 2003 Probe-force calibration experimentsusing the NIST electrostatic force balance Proc. AmericanSociety for Precision Engineering 2003 Winter TopicalMeeting (University of Florida) p 64 13 Pratt J R, Smith D T, Newell D B, Kramar J A andWhitenton E 2004 Progress towards Systeme InternationaldUnites traceable force metrology for nanomechanicsJ. Mater. Res. 19 366 14 Leach R K, Oldfield S, Awan S A
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:机械毕业设计40英文翻译外文文献翻译134
链接地址:https://www.renrendoc.com/p-531246.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!