高三数学专题三 分类整合的思想方法课件.ppt_第1页
高三数学专题三 分类整合的思想方法课件.ppt_第2页
高三数学专题三 分类整合的思想方法课件.ppt_第3页
高三数学专题三 分类整合的思想方法课件.ppt_第4页
高三数学专题三 分类整合的思想方法课件.ppt_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一部分常用数学思想方法专题三分类整合的思想方法 目录 专题概览 3 模拟训练 5 规律总结 17 返回目录 专题概览 在研究与解答某些数学问题时 数学对象的本质属性存在相同点与不同点 或研究问题时出发点的原因 处理问题时出现不定性 这样 对象就划分为不同的种类或多种情况 不同种类或不同情况的解法又不完全相同 必然要对不同种类或不同情况加以分类 并逐类求解 然后综合回答 这就是分类整合的思想方法 分类整合思想是逻辑划分思想在解数学问题中的具体应用 通俗地讲是化整为零 各个击破的解题策略 从思维意识上讲分类整合也是一种数学思想 分类的原则是 分类的对象是确定的 标准是统一的 分类要不遗漏 不重复 讨论时 分层次进行 不越级讨论 分类的步骤是 明确讨论对象 确定讨论范围 确定分类标准 正确进行分类 逐类进行讨论 获取阶段性结 返回目录 专题概览 果 综合归纳 小结得出结论 引起分类讨论的主要因素有 求解数学问题的过程中的某一环节的结论是多种可能的 含有参变量的数学问题 参变量的不同取值会导致解法或数学问题的性质不同 分类讨论问题已成为高考考查学生的知识与能力的热点问题 主要是因为 第一 分类讨论问题一般都覆盖知识点较多 有利于知识的考查 第二 解分类讨论问题要有一定的分析能力 一定的分类思想与分类技巧 有利于对学生能力的考查 第三 分类思想与生产实践和高等数学都紧密相关 因此 高考将会进一步加大考查力度 这需要引起高度重视 返回目录 模拟训练 1 一条直线过点 5 2 且在x轴 y轴上的截距相等 则此直线方程为 a x y 7 0b 2x 5y 0c x y 7 0或2x 5y 0d x y 7 0或2y 5x 0 解析 设该直线在x轴 y轴上的截距均为a 当a 0时 直线过原点 此时直线方程为y x 即2x 5y 0 当a 0时 设直线方程为 1 则求得a 7 方程为x y 7 0 点评 截距是很容易出错的一个概念 它实质上表示坐标的意义 有正 有负 有零三种情况 解题中 应根据截距是否为零进行分类讨论 答案 c 返回目录 模拟训练 解析 1 若2a 1 则a 2 若0 2a 1 则0 a 2 若log2a 0 则a的取值范围是 返回目录 模拟训练 解得a 1或a 0 这与0 a 矛盾 这样的a不存在 a的取值范围为 1 故选c 点评 含有参变量的问题 由于参变数的不同取值 会导致解法或数学问题的性质完全不同 因此 对含参数的问题 常常需要讨论 本题中 由于底数中含有参数 对相应对数函数的单调性有影响 因此 应就a的不同取值进行分类求解 答案 c 返回目录 模拟训练 3 求和sn a a2 an 解析 当a 0时 sn 0 当a 0时 为等比数列求和 若a 1 则由求和公式得 若a 1时 sn n 综合得 点评 由于等比数列定义本身有限制条件 等比数列求和公式是分类给出的 因此 应用等比数列求和公式时也需要讨论 这里进行了两层分类 第一层分类的依据是等比数列的概念 分为a 0和a 0 第二层分类的依据是等比数列求和公式的应用条件 答案 返回目录 模拟训练 4 直角坐标系xoy中 i j分别是与x y轴正方向同向的单位向量 在直角三角形abc中 若 2i j 3i kj 则k的可能值个数是 a 1b 2c 3d 4 解析 2 1 3 k 则 1 k 1 即有6 k 0 即k 6 即有2 k 1 0 即k 1 若 则 0 即有3 k k 1 0 无解 k 6或k 1 故选b 返回目录 模拟训练 点评 本题主要考查向量的运算 两向量垂直的条件及分类讨论的思想 由于 abc构成直角三角形 但不知哪一个是直角 故应分别对a b c为直角的情况进行讨论 有关几何问题中 由于几何元素的形状 位置关系不确定常常需要讨论 答案 b 返回目录 模拟训练 解析 按集合a中最大数可分四类 1 当a中最大数为1时 则b为 2 3 4 5 的非空子集 有24 1 15 个 2 当a中最大数为2时 则b为 3 4 5 的非空子集 有23 1 7 个 而这时的a有2个 因此 共有7 2 14 个 5 设集合i 1 2 3 4 5 选择i的两个非空子集a和b 要使b中最小的数大于a中最大的数 则不同的选择方法共有 a 50种b 49种c 48种d 47种 返回目录 模拟训练 3 当a中最大数为3时 则b为 4 5 的非空子集 有22 1 3 个 而这时的a有 4 个 因此 共有3 4 12 个 4 当a中最大数为4时 则b为 5 只有1个 而这时的a有 8 个 因此 共有1 8 8 个 综上所述 共有15 14 12 8 49种 故选b 点评 本题主要考查集合 排列组合的基础知识 考查分类讨论的思想 本题是考查能力的一道好题 所用的知识和方法都是中学里常见的 即集合 排列 组合的基本知识和分类讨论思想 因此 在高考复习中 一定要强调掌握基础知识和掌握基本的数学思想方法 以不变应万变 答案 b 返回目录 模拟训练 解析 依题意可设p 0 1 q x y 则 pq 又因为q在椭圆上 所以x2 a2 1 y2 pq 2 a2 1 y2 y2 2y 1 1 a2 y2 2y 1 a2因为 y 1 a 1 若1 a 则当y 1时 pq 取最大值2 6 设p是椭圆 y2 1 a 1 短轴的一个端点 q为椭圆上的一个动点 求 pq 的最大值 返回目录 模拟训练 点评 本题的本质是二次函数在闭区间上的最值问题 pq 2 f y 1 y 1 求 pq 2的最值 当求出 pq 2 以后 主要就是讨论这个二次函数图象的开口方向 对称轴问题了 二次函数与其他知识的交汇 在每年高考中都得到了充分体现 对二次函数在闭区间上求最值的方法与思路必须熟练掌握 对二次函数f x a x k 2 h a 0 在区间 m n 上的最值问题 有以下结论 1 若k m n 由ymin f k h ymax max f m f n 2 若k m n 由ymin min f m f n ymax max f m f n a 0时可仿此讨论 返回目录 模拟训练 解析 f x x2 2x 1 x 1 2 2 当t 1 1时 t 0 g t f t 1 t2 2 当t1 f x 3x2 4x 1 7 设f x x2 2x 1在区间 t t 1 上的最小值为g t 求g t 并画出g t 的图象 求函数f x xg x x 1 的单调区间 返回目录 模拟训练 令f x 0 得列表 由上表可知 f x xg x x 1 的单调递减区间为 1 单调递增区间为 点评 本题考查二次函数 轴定区间动 的最值及利用导数研究函数的单调性 对于二次函数的最值抓住顶点的横坐标是否属于所给区间是求解的关键 而讨论三次函数的单调性应抓住导数的符号这一关键进行求解 返回目录 规律总结 1 解分类整合问题的实质 将整体问题化为若干个部分来解决 化成部分后增加了题设条件 从而有利于问题的解决 2 分类整合的基本类型 1 问题中的变量或含有需要讨论的参数 要进行分类讨论 2 问题的条件是分类给出的 3 解题过程不能统一叙述 必须分类讨论 4 有关几何问题中 几何元素的形状 位置变化需要讨论 返回目录 3 分类讨论要注意的几点 1 根据问题实际 做到分类不重复不遗漏 2 熟练地掌握基本知识 基本方法和基本技巧 并做到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论