英文翻译外文文献翻译405用表面反应来测量圆柱形钢SCM440的磨削力和表面粗糙度的方法.doc

英文翻译外文文献翻译405用表面反应来测量圆柱形钢SCM440的磨削力和表面粗糙度的方法

收藏

压缩包内文档预览:(预览前20页/共37页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:532133    类型:共享资源    大小:2.26MB    格式:ZIP    上传时间:2015-11-25 上传人:QQ28****1120 IP属地:辽宁
6
积分
关 键 词:
机械毕业设计英文翻译
资源描述:
英文翻译外文文献翻译405用表面反应来测量圆柱形钢SCM440的磨削力和表面粗糙度的方法,机械毕业设计英文翻译
内容简介:
河南理工大学本科毕业设计(论文)说明书 1 用表面反应来测量圆柱形钢 SCM440的 磨削力和表面粗糙度的方法 摘要:这项研究的目的是为了有效的分析在磨削过程中的磨削力和表面粗糙度圆柱形工件,材料是钢 SCM440,l 利用表面反应的方法。传感器用来测量主轴驱动马达的电力,通过磨削参数的变化来测量和分析粗糙度。用实验数据建立一个模型,预测磨削力和粗糙度。通过单独的改变磨削率绘制数学模型的轮廓线。在工业中测量磨削条件是很容易的。 关键词:磨削力,表面粗糙度,圆柱形磨棒,表面反应方法 简介:不少实验更多的说明充分和有效的磨削过程是与车削和铣削很 不同。由于砂轮表面的不均匀,每次磨削工件时是不一样的。尽管努力的尝试,但是砂轮和工件间的磨削过程还没搞清楚。所以绘制了许多统计模型和计算机模型。不但这些模型很复杂,很难描述磨削过程,而且增加了优化磨削的难度,很难验证磨削参数之间的相互影响和磨削结果。 在过去的几十年中 Malkin调查和研究了磨削监测结果和磨削现象如切削机理、磨削 能以及磨削参数之间的相互影响。在他的研究中,那是很明显的:切削机理很复杂,很难重复磨削过程而获得相同的磨削条件。 Shaji刊登了 Taguchi方法。用石墨作润滑剂估算磨削表面 的参数。影响切削表面参数的参数如砂轮速度,工件转速,切削深度,打磨模型还有切削力被统计。 Kwak先生用 Taguchi方法显示了不同的切削参数引起磨削表面几何误差。同样用表面反映方法也可以估算磨削表面的几何误差。 在本论文中,用圆柱形钢 SCM440作磨削棒料,用表面反映方法来预测切削力和表面粗糙度和帮助选择磨削条件。 2.文献评论 2.1圆柱形磨料切屑形状 由于砂轮磨削表面无规则的分布着不规则的磨料,所以磨削机理很复杂,很难能清楚。为了方便研究,假设圆柱形棒料接触点放大,如图 1所示。 从切屑的 形状看,在磨削过程中,砂轮的磨削面与工件的接触点,开始与 C点接触,然后沿着弧 CD(接触长度)。所以在从 C点到 I点的过程中切削厚逐渐增加,并在 I点达到最大值。在从 I点到 D点的过程中切削厚又逐渐减小。切屑层的最大厚( g)等于 HI长,用公式表示为: nts 河南理工大学本科毕业设计(论文)说明书 2 在公式中, d表示工件直径, D表示砂轮直径, Z表示切削深度。切削厚的最大值还与平均断削点之间的距离( a)和速比 有关。砂轮和工件间接触的弧长被近似为一条直线,公式为: 进给速度 f表示工件每旋转一周而砂轮进给的长度,切向切削力 Ft和切削 功率 P0可以用如下 公式表示: 从公式 3中,可以很明显的看出切向力影响圆柱形棒料的磨削参数。 2.2 霍耳效应 和磨削力的测量 通常测量磨削过程的磨削力在工业中是用霍耳效应传感器。霍耳效应传感器的nts 河南理工大学本科毕业设计(论文)说明书 3 原理是霍耳效应。霍耳效应是 Dr Edwin Hall在 1879年发现的。 通过磨削驱动马达的的电流会产生一个磁场。如果把这个电流通过霍耳传感器,在洛伦兹力的作用下在传感器内产生电压,这个电压叫霍耳电压,电压的大小与通过传感器的电流成比例。所以,测量霍耳电压就可以知道通过驱动马达的电流。 2.3.表面反映方法 表面反映法是最佳获得希望输出结果的方法之一。在这种方法中,期望输出值可以用带磨削参数的函数表示。这个函数包括磨削参数被称为表面反映如图 2所示。为了建立表面反映模型,首先函数必须化成待定系数多项式。这些待定系数可以有实验确定。 由于表面反映函数涉及到许多参数和要进行许多实验,所以待定系数多项式很复杂。另外改变待定系数计算函数值很难满足所有的实验结果。为了方便常用图形最小二乘逼近和运算规律进行复合计算。 3.磨削实验和实验结果 3.1实验装置 在这个实验中,圆柱形磨削工件作为实验装置, 如图 3所示。工件的材料是SCM440钢热处理后达到 Rc60。砂轮的类型是在工业生产中常用的 WA120KmV。砂轮的直径是 320mm,宽度是 38mm。 为了测量不断随磨削条件改变的磨削力,三个霍耳传感器被装在主轴电动机电源线上。 12v的电源电压被通到霍耳传感器上通过 DC电源。霍耳电压随着电流改变的灵敏度是 0.4V/A。传感器的反应时间是 0.5s。用转换器和示波器可以连续的测量传感器的输出霍耳电压。 nts 河南理工大学本科毕业设计(论文)说明书 4 进给方向的粗糙度 可以直接测量。 磨削条件是,工件的转速分别是 52, 64和 76rpm。切削深度分别是 20, 25, 30和 35m进给速度分别是 1.19, 1.46和 2.14m/min。砂轮的转速( 1800rpm)保持不变。在所有的实验中用水混合冷却剂冷却。 3.2磨削条件对磨削力的影响 在磨削过程消耗的功率等于通过马达的电流和马达电源电压的乘积。如图 4所示磨削过程被分成 A, B, C和 D四个典型的部分。区域 A是不工作阶段,在这一区域砂轮和工 件没有接触,但是由于砂轮的旋转而消耗功率。当砂轮和工件有一个接触点时(如图 4中 B区域所示)磨削消耗的功率是变化的,其改变量与磨削条件有关。为了方便在本论文中,总磨削功率等于驱动功率加净磨削功率。总磨削功率被称为磨削圆柱形工件整个过程所消耗的功率。正 向进给之后,开始反向进给时是清磨阶段,即是 C阶段。如图所示在 C阶段时的磨削功率小于正向进给时的磨削功率,但是大于驱动功率。最后是 D阶段,砂轮脱离工件完成切削过程。 图 5显示的是在不同的工件旋转速度和进给速度下,切削深度对磨削功率的影响。磨削功率随着磨削深 度的增加而增加(如图 6所示)。尽管磨削 nts 河南理工大学本科毕业设计(论文)说明书 5 nts 河南理工大学本科毕业设计(论文)说明书 6 nts 河南理工大学本科毕业设计(论文)说明书 7 nts 河南理工大学本科毕业设计(论文)说明书 8 功率的增大在不同地方是倾斜的,磨削功率也随着工件转速和进给速度的增加而增加。工件转速对磨削功率的影响如图 7所示。在相同的工件转速下,磨削功率相差1.6倍由于磨削深度的不同。由此可见磨削深度对磨削功率的影响比进给速度对磨削功率的影响大。 3.3 磨削条件对表面粗糙度的影响 图 7显示的是磨削深度对工件切向的粗糙度影响。图 7( a)显示的是在不同的磨削深度和工件转速下的粗糙度。由于磨削深度的改变,粗糙度的最大值(maxR)成比例的增加,但是粗糙度的平均高度的中心线改变很小,尤其是在进给速度为1.46m/min时。图 7( b)显示的是在不同的磨削深度和进给速度下,粗糙度的平均高度的中心线的不同值。 3.4 清磨对磨削功率和表面粗糙度的影响 为了确定清磨对磨削功率和表面粗糙度的影响进行实验。清磨对磨削功率和表面粗糙度的影响用图 8表示。 nts 河南理工大学本科毕业设计(论文)说明书 9 nts 河南理工大学本科毕业设计(论文)说明书 10 nts 河南理工大学本科毕业设计(论文)说明书 11 nts 河南理工大学本科毕业设计(论文)说明书 12 由于清磨刚实现,还受磨削深度的影响,所以磨削功率保持最大值如图 8所示。但是由于 64th清磨的实现和不在受磨削深度的 影响,磨削功率降到不工作阶段时的驱动功率。在这个阶段不在有切屑掉下。所以,在几个清磨之后,认为圆柱形磨削工件的材料不在掉下。 粗糙度中心线的平均高度值如图 8( b)所示。在 6th清磨之后,表面粗糙度由于磨削深度的影响而不收敛成定植,必然原因在几个清磨之后,粗糙度很难达到理想值。这是个二难推论,所以要大量的减少清磨的比率,来改善表面粗糙度。由此,处理实际问题要很小心,尤其是选择磨削条件时。 4.应用表面反映方法 4.1表面反映模型的开发 象前面描述的那样,它能预测不同磨削条件下的磨削功率和表面粗糙度。首 先,磨削结果用函数表示,该函数带有实用的磨削参数。在这个研究中,表面反映方法用来获得想要的结果。其次,表面反映模型用工件的转速 v( rpm),进给速度 f( m/min)和磨削深度 d m表示为: 在公式中, 0PW表示磨削功率, aRm表示表面粗糙度。如图 9所示,不同的测量值和修正值用来 开发表面反映模型公式( 4)和( 5)。象图 9( a)所示,修正过的磨削功率非常的符合测量值。在图 9( b)显示的修正过的粗糙度与测量值一致,尽管有一些偏差。 图 10表示的是表面反映的一个例子。磨削功率的等高线随着工件转速和进给速度的改变而改变。在这个图中,磨削深度被定为 25m。在这个 3D图中如图 10( a)所示,磨削功率的增加是线形的,当工件转速和进给速度增加时。但是,从图 10nts 河南理工大学本科毕业设计(论文)说明书 13 ( b)中的等高线可以看出进给速度的影响比工件转速的影 响大。工件转速不变时,进给的一个很小的改变都能影响磨削功率, 在图 11所示的 3D表面粗糙度图中显示粗糙度受工件转速和进给速度的影响比磨削功率大。粗糙度是占优势的当工件转速改变时。 4.2 证实表面反映模型 在过去的几十年中,磨削条件的选择很大程度上需要专家去判断。对初学者和技术不熟练的工人来说是很困难的确定适合的磨削条件满足系统规定参数的要求,如粗糙度,切削率,和磨削功率。表面反映模型的建立使磨削条件的选择变的很容易。圆柱形工件每转的切削率可以用下面的公式表示: 式子 6 中, aD mm代表工件的平均直径。如果三个系统规定的参数用如( 7) ( 9)所示的工业要求表示。选择的磨削参数很容易的满足所有的系统规定的参数。尽管这有点象常规的参数优化问题,用表面反映模型很容易的解除来。 一个例子用图 12表示:工件转速定在 64rpm。首先通过改变进给速度, 磨削深度和系统规定的切削率范围绘制粗糙度的等高线,然后把磨削功率加进该等高线。现在磨削条件满足确定所有的系统规定参数,选择被系统参数线所封入的区域。 5.结束语 在本论文中,用表面反映方法测量圆柱形 SCM440钢磨削工件的磨削功率和表面粗糙度。霍耳传感器测量磨削过程主轴电动机的功率。 基于实验结果,磨削深度对磨削功率的影响比进给速度的影响大。另外,磨削深度对粗糙度的最大值的影响比对粗糙度平均中心线的高度影响大。进行一段时间清磨之后,磨削功率降低到驱动功率,但是不能获得期望的粗糙度。 nts 河南理工大学本科毕业设计(论文)说明书 14 nts 河南理工大学本科毕业设计(论文)说明书 15 nts 河南理工大学本科毕业设计(论文)说明书 16 用磨削参数和二次表面反映模型表示圆柱形工件的磨削功率和粗糙度。由于,磨削功率和粗糙度,利用工业要求和应用表面反映模型轮廓线很容易的可以选取磨削条件 。 nts 河南理工大学本科毕业设计(论文)说明书 17 References 1 E.S. Lee, N.H. Kim, A study on the machining characteristics in the experimental plunge grinding using the current signal of the spindlemotor, International Journal of Machine Tools & Manufacture 41 (7)(2001) 937 951. 2 Z.B. Hou, R. Komanduri, On the mechanics of the grinding process,part 2-thermal analysis of fine grinding, International Journal ofMachine Tools & Manufacture 44 (2 3) (2004) 247 270. 3 T. Kuriyagawa, K. Syoji, H. Ahshita, Grinding temperature withincontact arc between wheel and workpiece in high-efficiency grindingof ultrahard cutting tool materials, Journal of Materials Processing Technology 136 (1 3) (2003) 39 47. 4 A.V. Gopal, P.V. Rao, Selection of optimum conditions for maximummaterial removal rate with surface finish and damage as constraints in SiC grinding, International Journal of Machine Tools & Manufacture43 (1 3) (2003) 1327 1336. 5 B. Lin, S.Y. Yu, S.X. Wang, An experimental study on moleculardynamics simulation in nanometer grinding, Journal of MaterialsProcessing Technology 138 (1 3) (2003) 484 488. 6 M.N. Dhavlikar, M.S. Kulkarni, V. Mariappan, Combined Taguchiand dual response method for optimization of a centerless grindingoperation, Journal of Materials Processing Technology 132 (1 3)( 2003) 90 94. 7 X. Xu, Y. Yu, H. Huang, Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys, Wear 255 (7 12) (2003) 1421 1426. 8 S. Malkin, Grinding Technology-theory and Applications ofMachining with Abrasives, Wiley, New York, 1989. 9 T.W. Hwang, S. Malkin, Upper bound analysis for specific energy in grinding of ceramics, Wear 231 (2) (1999) 161 171. 10 S. Shaji, V. Radhakrishnan, Analysis of process parameters in surface grinding with graphite as lubricant based of the Taguchi method, Journal of Materials Processing Technology141 (1) (2003) 51 59. 11 J-S Kwak, Application of Taguchi and response surface methodologies for geometric error in surface grinding process, International Journal of Machine Tools and Manufacture 45 (3) nts 河南理工大学本科毕业设计(论文)说明书 18 (2005) 327 334. 附录 2 An analysis of grinding power and surface roughness in external cylindrical grinding of hardened SCM440 nts 河南理工大学本科毕业设计(论文)说明书 19 steel using the response surface method Abstract The aim of this study was to analyze effectively the grinding power spentduring the process and the surface roughness of the groundworkpiece in the external cylindrical grinding of hardened SCM440 steel using the response surface method. A Hall effect sensor was usedfor measuring the grinding power of the spindle driving motor. The surface roughness was also measured and evaluated according to thechange of the grinding conditions. Response surface models were developed to predict the grinding power and the surface roughness usingthe experimental results. From adding simply material removal rate to the contour plot of these mathematical models, it was seen that usefulgrinding conditions for industrial application could be easily determined. 2005 Elsevier Ltd. All rights reserved. Keywords: Grinding power; Surface roughness; External cylindrical grinding; Response surface method 1. Introduction A lot of attempts have been made to describe moreeffectively and adequately the grinding process. This isdissimilar to other machining processes such as turning andmilling, as the cutting edges of the grinding wheel don t have uniformity and act differently on the workpiece at eachgrinding. In spite of these attempts, typified by 1 3,describing the grinding action between the grinding wheeland the workpiece has not been made clear. So statistical models 4 and computer simulations 5 that could deal withthe variety of the cutting edges were introduced. These complexities and difficulties of illustrating the grinding process also raise obstacles to the optimization of the grinding process and to the verification of the interrelationship between grinding parameters and outcomes of the process 6 7. Malkin 8 9 investigated the process monitoring and studied various grinding phenomena such as cutting mechanisms, the specific energy and the interrelationship of the parameters during past decades. In his research, it was seen that the grinding process had very complex cutting mechanisms and also repeatability was difficult to obtain under the same grinding conditions. Shaji 10 reported a study on the Taguchi method for evaluating process parameters in surface grinding with graphite as lubricant. The nts 河南理工大学本科毕业设计(论文)说明书 20 effect of the grinding parameters (wheel speed, table speed, depth of cut and the dressing mode) on the surface finish and the grinding force was analyzed. Kwak 11 showed that the various grinding parameters affected the geometric error generated during the surface grinding by using the Taguchi method and also the geometric error could be predicted by means of the response surface method. In this study, the response surface models are developed to predict the grinding power and the surface roughness in the external cylindrical grinding of the hardened SCM440 steel and also to help the selection of grinding conditions. 2. Literature review 2.1. Chip geometry of external cylindrical grinding The cutting mechanism of the grinding process is very complex and not clear because the grinding wheel has many irregular abrasives that are randomly distributed in the working area of the wheel circumference. Under several assumptions for convenience, the enlarged contact geometry in the external cylindrical grinding process can be simply illustrated as shown in Fig. 1. From the chip geometry, it is seen that a cutting edge on the circumference of the grinding wheel contacts firstly a point C on the workpiece and then it moves along the arc CD (contact length) during the grinding. So the chip thickness in a viewpoint of the cutting edge increases nts 河南理工大学本科毕业设计(论文)说明书 21 gradually from C to I and peaks at point I. And then, the chip thickness decreases from I to D. The maximum chip thickness (g) in the cutting edge is about equal to the length HI and can be expressed as below. Where d and D represent the workpiece diameter and the wheel diameter, respectively. Z is the depth of cut. The maximum chip thickness is mostly affected by an average distance (a) between the successive cutting edges at the grinding wheel and the speed ratio ( v V ). The arc of the contact length (lc) between the grinding wheel and the workpiece can also be represented by applying a small angle approximation. Considering traverse speed f that is a traverse length per revolution in the workpiece, a tangential grinding force Ft and an energy Po spent during grinding are as follows. From Eq. (3), it is seen that the tangentialgrinding force(or energy) in the external cylindrical grinding directly concerns a selection of the grinding parameters. 2.2. Hall effect and grinding power measurement Usually to measure the spent power of a machine during the process, the Hall effect sensor would be available in many types of industrial applications. The principle of the Hall effect sensor is based on the Hall effect, which was discovered by Dr Edwin Hall in 1879. The current flowing through a cable from the driving motor of a grinding machine produces a magnetic field. If the cable passes into the Hall effect sensor, an induced voltage in the sensor is developed due to the Lorentz force. This voltage is known as the Hall voltage and the amount of the Hall voltage is proportional to the original current flowing into the cable. So from measuring the changes of the Hall voltage, the spent power of the driving motor can be easily obtained during the grinding process. nts 河南理工大学本科毕业设计(论文)说明书 22 2.3. Response surface method The response surface analysis is one of various methods for optimizing and evaluating the process parameters to achieve the desired output. In this method, the desired output can be represented as a function of the process parameters. The function that consists of the process parameters is called a response surface as shown in Fig. 2. In order to develop the response surface model, firstly the function must be assumed as a mathematical polynomial form having coefficients that should be determined. And then these coefficients are determined with applying the set of the experimental results. In the case of the situation that the response surface function is related to various process parameters and a lot of experiments are conducted, the calculation for determining coefficients of the polynomial equation is very complex. And also it is difficult to finish the calculation by determining adequate coefficients that have to satisfy all of the experimental results. The scheme of a least square error, therefore, is usually adopted and a commercial code is used for convenience of the multiple calculation. 3. Grinding experiment and obtained results 3.1. Experimental set-up The experimental set-up for the external cylindrical grinding used in this study is shown in Fig. 3. The workpiece material was the chromium molybdenum steel (SCM440) and heat-treated to Rc 60. This material is commonly used for rotating shafts. The grinding wheel was a type of WA120 Km V that is widely used in various industrial areas. The diameter of the wheel was 320 mm and the width 38 mm. To evaluate the change of the grinding energy according to the nts 河南理工大学本科毕业设计(论文)说明书 23 various grinding conditions, three Hall effect sensors were installed in the electric cables of the grinding spindle motor. The current source of 12 V in the Hall effect sensors was supplied from a DC power supply unit. The sensitivity nts 河南理工大学本科毕业设计(论文)说明书 24 between the current change in the spindle motor and the output voltage in the Hall effect sensor was 0.4 V/A. The response time of the sensor was about 0.5 ms. The output voltage of the sensor was continuously measured by using an A/D converter and an oscilloscope during the grinding process. After the grinding, the surface roughness in the traverse direction in the workpiece was measured. In the grinding conditions, the workpiece revolution speeds were 52, 64 and 76 rpm. The depths of cut in a pass were 20, 25, 30 and 35 mm and the traverse speeds were 1.19, 1.46 and 2.14 m/min. The wheel speed (1800 rpm) was maintained and a water-miscible coolant was supplied in all grinding experiments. 3.2. Effect of grinding conditions on power The grinding power that was spent during the grinding process was obtained by multiplying the measured current flowing into the spindle motor cable and the supplied voltage of the motor. Fig. 4 shows a typical signal form of the grinding power during the process cycle that consisted of 4 individual parts illustrated as A, B, C and D. Region A was an idle stage with no contact between the grinding wheel and the workpiece. Although there was no contact, power was used in turning the grinding wheel. On contact between the wheel nts 河南理工大学本科毕业设计(论文)说明书 25 and the workpiece, the grinding power(see region B shown in Fig. 4) changed. The amount ofchange depended on the grinding conditions. For convenience, in this study, the total grinding power, which added the driving power to the net grinding power, was defined asthe grinding power spent during the external cylindrical grinding process. At the end of a feed forward action in the grinding wheel, the grinding wheel started the feed backward traverse, referred to spark-out motion shown in region C. As seen in region C, the grinding power was less than that of the feed forward traverse but was more than the driving power. Finally in region D, the grinding wheel disengaged the workpiece and finished the process cycle. Fig. 5 presents the effect of the depth of cut on the grinding power for different workpiece revolution speed and traverse speed. The grinding power spent during the grinding process increased with increasing depth of cut(Fig. 6). Although the slopes of the grinding power increases were somewhat different, grinding power was also increased with increasing workpiece speed and traverse speed. The effect of the workpiece speed on grinding power is shown in Fig. 7. Although the same workpiece speed was applied, the grinding power differed about 1.6 times according to the depth of cut. From the results, it is seen that in
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:英文翻译外文文献翻译405用表面反应来测量圆柱形钢SCM440的磨削力和表面粗糙度的方法
链接地址:https://www.renrendoc.com/p-532133.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!