2017_18学年高中数学第三章3.1.2两条直线平行与垂直的判定学案含解析.docx_第1页
2017_18学年高中数学第三章3.1.2两条直线平行与垂直的判定学案含解析.docx_第2页
2017_18学年高中数学第三章3.1.2两条直线平行与垂直的判定学案含解析.docx_第3页
2017_18学年高中数学第三章3.1.2两条直线平行与垂直的判定学案含解析.docx_第4页
2017_18学年高中数学第三章3.1.2两条直线平行与垂直的判定学案含解析.docx_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

31.2两条直线平行与垂直的判定两条直线平行提出问题平面几何中,两条直线平行,同位角相等问题1:在平面直角坐标中,若l1l2,则它们的倾斜角1与2有什么关系?提示:相等问题2:若l1l2,则l1,l2的斜率相等吗?提示:不一定,可能相等,也可能都不存在问题3:若l1与l2的斜率相等,则l1与l2一定平行吗?提示:不一定可能平行也可能重合导入新知对于两条不重合的直线l1,l2,其斜率分别为k1,k2,有l1l2k1k2.化解疑难对两条直线平行与斜率的关系要注意以下几点(1)l1l2k1k2成立的前提条件是:两条直线的斜率都存在;l1与l2不重合(2)当两条直线不重合且斜率都不存在时,l1与l2的倾斜角都是90,则l1l2.(3)两条不重合直线平行的判定的一般结论是:l1l2k1k2或l1,l2斜率都不存在两条直线垂直提出问题已知两条直线l1,l2,若l1的倾斜角为30,l1l2.问题1:上述问题中,l1,l2的斜率是多少?提示:k1,k2.问题2:上述问题中两直线l1,l2的斜率有何关系?提示:k1k21.问题3:若两条直线垂直且都有斜率,它们的斜率之积一定为1吗?提示:一定导入新知如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于1;反之,如果它们的斜率之积等于1,那么它们互相垂直,即l1l2k1k21.化解疑难对两条直线垂直与斜率的关系要注意以下几点(1)l1l2k1k21成立的前提条件是:两条直线的斜率都存在;k10且k20.(2)两条直线中,一条直线的斜率不存在,同时另一条直线的斜率等于零,则两条直线垂直(3)判定两条直线垂直的一般结论为:l1l2k1k21,或一条直线的斜率不存在,同时另一条直线的斜率等于零两条直线平行的判定例1根据下列给定的条件,判断直线l1与直线l2是否平行(1)l1经过点A(2,1),B(3,5),l2经过点C(3,3),D(8,7);(2)l1经过点E(0,1),F(2,1),l2经过点G(3,4),H(2,3);(3)l1的倾斜角为60,l2经过点M(1,),N(2,2);(4)l1平行于y轴,l2经过点P(0,2),Q(0,5)解(1)由题意知,k1,k2,所以直线l1与直线l2平行或重合,又kBC,故l1l2.(2)由题意知,k11,k21,所以直线l1与直线l2平行或重合,kFG1,故直线l1与直线l2重合(3)由题意知,k1tan 60,k2,k1k2,所以直线l1与直线l2平行或重合(4)由题意知l1的斜率不存在,且不是y轴,l2的斜率也不存在,恰好是y轴,所以l1l2.类题通法判断两条不重合直线是否平行的步骤活学活用求证:顺次连接A(2,3),B,C(2,3),D(4,4)四点所得的四边形是梯形(如图所示)证明:因为kAB,kCD,所以kABkCD,从而ABCD.因为kBC,kDA,所以kBCkDA,从而直线BC与DA不平行因此,四边形ABCD是梯形两条直线垂直的问题例2已知直线l1经过点A(3,a),B(a2,3),直线l2经过点C(2,3),D(1,a2),如果l1l2,求a的值解设直线l1,l2的斜率分别为k1,k2.直线l2经过点C(2,3),D(1,a2),且21,l2的斜率存在当k20时,a23,则a5,此时k1不存在,符合题意当k20时,即a5,此时k10,由k1k21,得1,解得a6.综上可知,a的值为5或6.类题通法使用斜率公式判定两直线垂直的步骤(1)一看:就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第一步(2)二用:就是将点的坐标代入斜率公式(3)求值:计算斜率的值,进行判断尤其是点的坐标中含有参数时,应用斜率公式时要对参数进行讨论总之,l1与l2一个斜率为0,另一个斜率不存在时,l1l2;l1与l2斜率都存在时,满足k1k21.活学活用已知定点A(1,3),B(4,2),以AB为直径作圆,与x轴有交点C,则交点C的坐标是_答案:(1,0)或(2,0)平行与垂直的综合应用例3已知A(4,3),B(2,5),C(6,3),D(3,0)四点,若顺次连接A,B,C,D四点,试判定四边形ABCD的形状解由题意知A,B,C,D四点在坐标平面内的位置,如图所示,由斜率公式可得kAB,kCD,kAD3,kBC.所以kABkCD,由图可知AB与CD不重合,所以ABCD.由kADkBC,所以AD与BC不平行又因为kABkAD(3)1,所以ABAD,故四边形ABCD为直角梯形类题通法1在顶点确定的情况下,确定多边形形状时,要先画出图形,由图形猜测其形状,为下面证明提供明确目标2证明两直线平行时,仅有k1k2是不够的,注意排除两直线重合的情况活学活用已知A(1,0),B(3,2),C(0,4),点D满足ABCD,且ADBC,试求点D的坐标解:设D(x,y),则kAB1,kBC,kCD,kDA.因为ABCD,ADBC,所以,kABkCD1,kDAkBC,所以解得即D(10,6)典例(12分)已知直线l1经过A(3,m),B(m1,2),直线l2经过点C(1,2),D(2,m2)(1)若l1l2,求m的值;(2)若l1l2,求m的值解题流程规范解答 名师批注处易漏掉而直接利用两直线平行或垂直所具备的条件来求m值,解答过程不严谨处讨论k20和k20两种情况此处易漏掉检验,做解答题要注意解题的规范由题知直线l2的斜率存在,且k2.(2分)(1)若l1l2,则直线l1的斜率也存在,由k1k2,得,解得m1或m6,(4分)经检验,当m1或m6时,l1l.(6分)(2)若l1l2,当k20时,此时m0,l1斜率存在,不符合题意;(8分)当k20时,直线l2的斜率存在且不为0,则直线l1的斜率也存在,且k1k21,即1,解得m3或m4,(10分)所以m3或m4时,l1l.(12分)活学活用已知A(m3,2),B(2m4,4),C(m,m),D(3,3m2),若直线ABCD,求m的值解:因为A,B两点纵坐标不等,所以AB与x轴不平行因为ABCD,所以CD与x轴不垂直,故m3.当AB与x轴垂直时,m32m4,解得m1,而m1时,C,D纵坐标均为1,所以CDx轴,此时ABCD,满足题意当AB与x轴不垂直时,由斜率公式得kAB,kCD.因为ABCD,所以kABkCD1,解得m1.综上,m的值为1或1.随堂即时演练1下列说法正确的有()若两条直线的斜率相等,则这两条直线平行;若l1l2,则k1k2;若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直;若两条直线的斜率都不存在且两直线不重合,则这两条直线平行A1个B2个C3个 D4个答案:A2直线l1,l2的斜率是方程x23x10的两根,则l1与l2的位置关系是()A平行 B重合C相交但不垂直 D垂直答案:D3已知直线l1的倾斜角1为30,l2l1,则l2的斜率k2_,l2的倾斜角2_.答案:1204经过点(m,3)和(2,m)的直线l与斜率为4的直线互相垂直,则m的值是_答案:5判断下列各小题中的直线l1与l2的位置关系(1)l1的斜率为10,l2经过点A(10,2),B(20,3);(2)l1过点A(3,4),B(3,100),l2过点M(10,40),N(10,40);(3)l1过点A(0,1),B(1,0),l2过点M(1,3),N(2,0);(4)l1过点A(3,2),B(3,10),l2过点M(5,2),N(5,5)答案:(1)l1l2(2)l1l2(3)l1l2(4)l1l2课时达标检测一、选择题1已知过点P(3,2m)和点Q(m,2)的直线与过点M(2,1)和点N(3,4)的直线平行,则m的值是()A1B1C2 D2答案:B2以A(1,1),B(2,1),C(1,4)为顶点的三角形是()A锐角三角形B钝角三角形C以A点为直角顶点的直角三角形D以B点为直角顶点的直角三角形答案:C3已知点A(2,5),B(6,6),点P在y轴上,且APB90,则点P的坐标为()A(0,6) B(0,7)C(0,6)或(0,7) D(6,0)或(7,0)答案:C4若A(4,2),B(6,4),C(12,6),D(2,12),则下面四个结论:ABCD;ABAD;ACBD;ACBD中正确的个数为()A1 B2C3 D4答案:C5已知点A(2,3),B(2,6),C(6,6),D(10,3),则以A,B,C,D为顶点的四边形是()A梯形 B平行四边形C菱形 D矩形答案:B二、填空题6l1过点A(m,1),B(3,4),l2过点C(0,2),D(1,1),且l1l2,则m_.答案:07已知直线l1的倾斜角为45,直线l2l1,且l2过点A(2,1)和B(3,a),则a的值为_答案:48已知A(2,3),B(1,1),C(1,2),点D在x轴上,则当点D坐标为_时,ABCD.答案:(9,0)三、解答题9已知ABC的三个顶点坐标分别为A(1,0),B(1,1),C(0,2),试分别求ABC三条边上的高所在直线的斜率解:设边AB,AC,BC上的高所在直线的斜率分别为k1,k2,k3.因为kAB,所以由kABk11,可得k12;因为kAC2,所以由kACk21,可得k2;因为kBC1,所以由kBCk31,可得k31.综上可得,边AB,AC,BC上的高所在直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论