




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
使z 2x y取得最大值的可行解为 且最大值为 复习引入 1 已知二元一次不等式组 1 画出不等式组所表示的平面区域 满足的解 x y 都叫做可行解 z 2x y叫做 2 设z 2x y 则式中变量x y满足的二元一次不等式组叫做x y的 y 1 x y 0 x y 1 2x y 0 1 1 2 1 使z 2x y取得最小值的可行解 且最小值为 这两个可行解都叫做问题的 线性约束条件 线性目标函数 线性约束条件 2 1 1 1 3 3 最优解 例题分析 例1 某工厂生产甲 乙两种产品 已知生产甲种产品1t需消耗a种矿石10t b种矿石5t 煤4t 生产乙种产品1吨需消耗a种矿石4t b种矿石4t 煤9t 每1t甲种产品的利润是600元 每1t乙种产品的利润是1000元 工厂在生产这两种产品的计划中要求消耗a种矿石不超过300t 消耗b种矿石不超过200t 消耗煤不超过360t 甲 乙两种产品应各生产多少 精确到0 1t 能使利润总额达到最大 列表 5 10 4 600 4 4 9 1000 设生产甲 乙两种产品 分别为xt yt 利润总额为z元 例题分析 列表 把题中限制条件进行转化 约束条件 10 x 4y 300 5x 4y 200 4x 9y 360 x 0 y 0 z 600 x 1000y 目标函数 设生产甲 乙两种产品 分别为xt yt 利润总额为z元 xt yt 例题分析 解 设生产甲 乙两种产品 分别为xt yt 利润总额为z元 那么 10 x 4y 300 5x 4y 200 4x 9y 360 x 0 y 0 z 600 x 1000y 作出以上不等式组所表示的可行域 作出一组平行直线600 x 1000y t 10 x 4y 300 5x 4y 200 4x 9y 360 600 x 1000y 0 m 答 应生产甲产品约12 4吨 乙产品34 4吨 能使利润总额达到最大 12 4 34 4 经过可行域上的点m时 目标函数在y轴上截距最大 90 30 75 40 50 40 此时z 600 x 1000y取得最大值 例题分析 例2要将两种大小不同规格的钢板截成a b c三种规格 每张钢板可同时截得三种规格的小钢板的块数如下表所示 解 设需截第一种钢板x张 第一种钢板y张 则 2x y 15 x 2y 18 x 3y 27 x 0 y 0 作出可行域 如图 目标函数为z x y 今需要a b c三种规格的成品分别为15 18 27块 问各截这两种钢板多少张可得所需三种规格成品 且使所用钢板张数最少 x张 y张 例题分析 2x y 15 x 3y 27 x 2y 18 x y 0 直线x y 12经过的整点是b 3 9 和c 4 8 它们是最优解 作出一组平行直线z x y 目标函数z x y 当直线经过点a时z x y 11 4 x y 12 解得交点b c的坐标b 3 9 和c 4 8 调整优值法 2 4 6 18 12 8 27 2 4 6 8 10 15 但它不是最优整数解 作直线x y 12 答 略 例题分析 2x y 15 x 3y 27 x 2y 18 x y 0 经过可行域内的整点b 3 9 和c 4 8 且和原点距离最近的直线是x y 12 它们是最优解 答 略 作出一组平行直线t x y 目标函数t x y 打网格线法 在可行域内打出网格线 当直线经过点a时t x y 11 4 但它不是最优整数解 将直线x y 11 4继续向上平移 1 2 1 2 18 27 15 9 7 8 不等式组表示的平面区域内的整数点共有 个 巩固练习1 1234x y43210 4x 3y 12 在可行域内找出最优解 线性规划整数解问题的一般方法是 1 若区域 顶点 处恰好为整点 那么它就是最优解 在包括边界的情况下 2 若区域 顶点 不是整点或不包括边界时 应先求出该点坐标 并计算目标函数值z 然后在可行域内适当放缩目标函数值 使它为整数 且与z最接近 在这条对应的直线中 取可行域内整点 如果没有整点 继续放缩 直至取到整点为止 3 在可行域内找整数解 一般采用平移找解法 即打网络 找整点 平移直线 找出整数最优解 解线性规划应用问题的一般步骤 2 设好变元并列出不等式组和目标函数 3 由二元一次不等式表示的平面区域做出可行域 4 在可行域内求目标函数的最优解 1 理清题意 列出表格 5 还原成实际问题 准确作图 准确计算 二 给定一项任务 问怎样统筹安排 能使完成这项任务的人力 物力资源最小 一 给定一定数量的人力 物力资源 问怎样安排运用这些资源 能使完成的任务量最大 收到的效益最大 线性规划研究的两类重要实际问题 巩固练习 咖啡馆配制两种饮料 甲种饮料每杯含奶粉9g 咖啡4g 糖3g 乙种饮料每杯含奶粉4g 咖啡5g 糖10g 已知每天原料的使用限额为奶粉3600g 咖啡2000g糖3000g 如果甲种饮料每杯能获利0 7元 乙种饮料每杯能获利1 2元 每天在原料的使用限额内饮料能全部售出 每天应配制两种饮料各多少杯能获利最大 解 将已知数据列为下表 设每天应配制甲种饮料x杯 乙种饮料y杯 则 作出可行域 目标函数为 z 0 7x 1 2y作直线l 0 7x 1 2y 0 把直线l向右上方平移至l1的位置时 直线经过可行域上的点c 且与原点距离最大 此时z 0 7x 1 2y取最大值解方程组得点c的坐标为 200 240 二元一次不等式表示平面区域 直线定界 特殊点定域 简单的线性规划 约束条件 目标函数 可行解 可行域 最优解 求解方法 画 移 求 答 小结 解线性规划应用问题的一般步骤 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 9.4全民守法 教学设计-2024-2025学年高中政治统编版必修三政治与法治
- 2025合作伙伴制片聘用合同
- 2025超市员工劳动合同
- 2025年合同终止通知函模板
- 2025幕墙工程的采购合同范本
- 2025合同法基本概念辨析题
- Lesson 2 Films and Television教学设计-2025-2026学年初中英语六年级下册上海新世纪版
- 印刷厂产品包装规格回收办法
- 开封事业单位笔试真题2025
- 2024年温江区招聘教师笔试真题
- 幼儿园副园长岗位竞聘自荐书模板
- 老旧小区健身设施增设规划方案
- T∕CEPPEA5004.5-2020核电厂常规岛施工图设计文件内容深度规定第5部分仪表与控制
- 酸碱防护知识培训课件
- 值勤岗亭安装方案范本
- 2025年吉林省中考数学真题卷含答案解析
- GB/T 45953-2025供应链安全管理体系规范
- 第十三章 三角形 单元试卷(含答案) 2025-2026学年人教版数学八年级上册
- 《数据库原理》课件第2章建立数据模型
- 产程干预的医学指征课件
- 2024年辽宁轨道交通职业学院单招《英语》真题含完整答案详解【易错题】
评论
0/150
提交评论