资源目录
压缩包内文档预览:
编号:534141
类型:共享资源
大小:2.81MB
格式:ZIP
上传时间:2015-11-26
上传人:QQ28****1120
认证信息
个人认证
孙**(实名认证)
辽宁
IP属地:辽宁
20
积分
- 关 键 词:
-
机械毕业设计全套
- 资源描述:
-
机车轮对轴承压装机液压系统设计,机械毕业设计全套
- 内容简介:
-
毕业设计(论文)中期报告 题目:机车轮对轴承压装机液压系统设计 系 别 机电信息系 专 业 机械设计制造及其自动化 班 级 姓 名 学 号 导 师 2013 年 3 月 15 日 nts1. 目前进度 机车轮对轴承压装机液压系统总体方案的初 步设计 ,部分计算。 2. 工艺过程 推入轮对轮对顶升伸套定位轮对锁紧压装轴承伸套杆、压装杆退回,锁紧装置退回落对送对。 3. 液压系统的初步方案设计 ( 1)确定回路方式 该液压系统采用开式回路,即执行元件的排油回油箱,油液经过沉淀、冷却后再进入液压泵的进口。 ( 2) 选用液压油液 一般而言,柱塞泵选用 HM 油,含磷的液压油在各方面的性能都比较符合,因此我们可以选择磷酸酯液类液压油。 ( 3) 初定系统压力 由于我们所要设计的液压系统服务于重型运输机械,根据各类机械的常用系统压力我们选定系统初定压力为 20MPa。 ( 4) 选择执行元件 在该系统中,要求所有的执行元件作直线运动,并且只要求一个方向工作、反向退回,所以选择单活塞杆液压缸。 ( 5) 确定液压泵类型 在该系统中,我们根据系统初定压力 20MPa 选用柱塞泵,由于系统要求高效节能,应选用变量泵。 ( 6) 选择换向回路 该系统液压设备自动化程度较高,应选用电动换向。执行元件较多,可选用多路换向阀。 ( 7) 选择调速方式 该系统采用变量泵调速。 4. 液压系统原理图 nts 图 1 液压系统原理图 1-变量柱塞泵; 2、 11-单向阀; 3-先 导式溢流阀; 4、 12-二位四通电磁换向阀; 5、 6、 7、 8-三位四通电磁换向阀; 9、 10-顺序阀; 13-液压锁; 14、 15、 16、 17、 18、 19-压力继电器; 20-顶对液压缸; 21-送对液压缸; 22-锁紧液压缸; 23-伸套压装液压缸; 24、 25-节流阀 图示为轴承压装机的液压系统原理图。系统的油源为变量柱塞泵 1,其最高工作压力由先导式溢流阀 3设定,卸荷由二位四通电磁换向阀 4控制,单向阀 2用于防止油液倒灌。系统有顶对液压缸 20、送对液压缸 21、锁紧液压缸 22、伸套压装液压缸 23等4个并联的执行器,分 别采用三位四通电磁换向阀 5、 6、 7、 8控制其运动方向;锁紧缸 22通过液压锁 13实现轮对的锁紧;液压缸 23的无杆腔油路设有顺序阀 9和节流阀 25,用于压装结束后换向前的释压控制,以减小压力冲击;顺序阀 10用作缸 23的背压阀。系统中的压力继电器 14、 15、 16、 17、 18、 19作为系统的发信装置,用于系统工作循环的自动控制。 系统工作时,空载启动液压泵,然后电磁铁 1YA 通电使换向阀 4切换至下位,系统升压。轮对推入后,电磁铁 4YA 通电使换向阀 5切换至左位,液压泵 1的压力油经单向阀 2和换向阀 5进入顶对缸 20的无杆腔, 活塞杆顶起轮对;延时后,电磁铁 6YA 通电使换向阀 6切换至左位,泵 1的压力油经阀 2和换向阀 6进入缸 21的无杆腔,活塞杆顶出使V 形道轨翻转;到位后压力继电器 19发信,电磁铁 4YA、 6YA 断电使换向阀 5和换向阀 6均复至中位, 2YA、 8YA 通电使换向阀 8和 7切换至左位,泵 1的压力油经阀 2后,经换向阀 8进入压装缸 23的无杆腔,经换向阀 7和液压锁 13进入锁紧缸 22的无杆腔,伸套杆伸nts出定位,因有阀 10造成的回油背压,压装杆不动,此时在节流阀 24作用下,锁紧缸 22在伸套定位后将轮对锁紧,并由压力继电器 16发信使 8YA 断电, 换向阀 7复至中位,由液压锁 13锁紧;此后系统压力继续升高,克服背压,压装杆伸出实现压装。压装完成后,压力升高使继电器 15发信,电磁铁 10YA 通电使换向阀 12切换至上位,首先,液压缸 23的无杆腔经阀 9和 25释压(释压时间由节流阀 25的开度决定),然后,电磁铁 2YA断电, 3YA、 9YA 延时通电后使换向阀 8和换向阀 7均切换至右位,液压泵 1的压力油经换向阀 8和单向阀 11进入缸 23的有杆腔,经阀 7和液压锁 13进入缸 22的有杆腔,伸套杆与压装杆一起退回,锁紧缸也退回。到位后,压力继电器 14发信,电磁铁 3YA、 9YA断电 使换向阀 8和 7均复至中位, 5YA 通电使换向阀 5切换至右位,泵 1的压力油进入缸20的有杆腔,实现落对且送对, 10YA 断电使换向阀 12复位,恢复可压装状态。此后,压力继电器 18发信,电磁铁 7YA 通电使送对缸复位。最后,压力继电器 17发信使 5YA、7YA、 1YA 断电而使系统复原。 电磁铁动作表 电磁铁 轮对顶升 伸套定位 轮对锁紧 压装轴承 伸 套 杆 压 装杆落回 落对送对 复原 1YA + + + + + + 2YA + + + 3YA + 4YA + 5YA + 6YA + 7YA + 8YA + 9YA + 10YA + 5. 液压缸部分计算 已知系统初定压力 MPaPs 20 ,液压缸最高工作压力 PsP 9.0max ,NL KF 550, maxPFA L ; 根据上述已知条件,算得: M P aM P aP 18209.0m ax ; 22 3 0 60 3 0 6.0 cmmA 该液压系统所有液压缸全为单活塞杆液压缸,分析得:其中顶对液压缸、送对液压缸、锁紧液压缸的最大工作压力都相同42DA , Dd 7.0 ,由于上述三个液nts压缸回路无背压,视其背压都为 0 MPa ,因此不考虑背压的影响; 算得: cmAD 7.194 cmcmd 根据国家标准 GB/T2348-1993 圆整 cmD 20 、 cmd 14 其中伸套压装液压缸因有顺序阀 10 造成的背压,所以要考虑回油背压,假定初定背压值 MPaPb 8.0,(其中无杆腔有效面积 1A 等于有杆腔面积 2A 两倍,即21 2AA ),则: 2226631 3130313.0108.02110181055021m ax cmmmPPFAbcmcmAD 2014.331344 11 由 21 2AA ,可知活塞杆直径: cmcmDd 14.1420707.0707.0 11 根据国家标准 GB/T2348-1993 圆整 cmD 20 、 cmd 14 按标准直径算出: 22221 3142044 cmcmDA 222222 14.160142044 cmdDA 6. 存在问题及解决措施 ( 1) 电动机的选择和计算; 根据液压系统的执行元件的工作过程来进行进一步计算,来求得所需电动机的 功率 P。 ( 2) 液压缸各工作阶段的工作压力、流量和功率的计算。 根据液压缸的速度和负载图以及液压缸的有效面积,进而算出液压缸工作过程各阶段的压力、流量和功率。 7. 后期工作安排 ( 1)最终方案设计的确定改进; ( 2)完成整个液压系统的设计计算; nts ( 3)画出 CAD 图 指导教师签字: 年 月 日 nts 毕业设计 (论文 )开题报告 题目:机车轮对轴承压装机液压系统设计 系 别 机电信息系 专 业 机械设计制造及其自动化 班 级 姓 名 学 号 导 师 2012 年 12 月 20 日 nts 机车轮对轴承压装机液压系统设计 1.本课题综述 1.1 课题背景: 在当今这个高速发展的社会,世界的格局不断在变革,技术在不断变革 , 我们身边的各种交通运输工具也一样不断的面临着更新变革。在这个社会里,如果要想得到长足的发展,拉近和发达国家、地区的差距,时刻处于领先位置,那么改革和发展那是必不可少的,当然也包括技术的改革和发展,否则我们就会被这个强权社会所淘汰,永远处于一个弱势的地位,不能与那些所谓的世界强国争锋。就拿铁道运输来说,铁道运输是国家运输的命脉,它分布广,运输量大,客货两运,对国民经济的发展起着非常重要的作用。世界各国都在不断的努力发展各自的铁道事业。尤其是近今年高铁的飞速发展,更进一步凸显出了铁道运输的巨大作用。为进一步提高铁道运营能力和效率、增强与航空、公路、水运的竞争力,提高行车速度是关键的一步,高铁的飞速发展就为这一点作了很好的注释。随着列车提速的实现,对机车运行的平稳性和安全性提出更高的要求,而对轴承压装质量也就显得尤为重要,它不仅关系到列车运行的平稳和舒适,更关系到列车安全。对于机车轮对来说, 轮对压装机主要用于机车轮对的压装,轴承压装机的设计,尤其是轴承压装机液压系统的设计就更是尤为重要,液压传动与控制系统相当于压装机的神经中枢系统,液压传动的准确性与平稳性决定了机器性能的好坏。伴随着液压技术的发展,压装机也在不断的更新发展。压装机是对机械零部件进行安装以及拆除为目的的设备,在机械加工行业具有广泛的用途,在国民经济的各个领域都担负起了至关重要的作用。高效率、低能耗、低噪声是近代液压机的主要特点。除此外,还必须使液压系统的价值与成本之比要高,只有这样,才能在市场上具有竞争力。 1.2 机车轮对轴承压 装机液压系统国内外相关研究情况 目前关于轮对轴承压装机液压系统的研究、设计在国内外还是比较多的,主要集中在进行轴承压装机液压机系统的设计、研究开发和改进等方面的研究。 刘胜荣等设计的铁路货车滚动轴承压装机液压系统并详细阐述了其工作过程,实现了 21t 轴重及 25t 轴重轮对轴承的压装任务,达到了预定的目的。其中压装机举升机构、引申定位机构及轴向锁定机构均采用液压驱动,压装过程较为平稳,且能提供合适的动力。压装采用双端同时动作的方式,能实现频繁作业,效率较高。结果表明:该液压系统运行平稳,能驱动与控 制各液压缸的有序动作,nts能实现 21t 轴重及 25t 轴重轮对轴承的压装任务。 张谦对铁路货车通用轮对轴承压装装置也进行了设计研究。张谦认为,为保证压装精度,提高压装效率,压装时可以针对不同车型的轴承进行工作,因此将液压、自动化控制、计算机监控等先进技术引入压装机,对压装设备进行了一系列更新改造。张谦通过分析压装机的机械结构、液压系统及自动化控制方式,设计的轴承压装机采用框架式结构,由机体、液压站和控制台三部分组成。压装机采用液压驱动,两端支撑架上各安装一个伸套压装缸,其安装中心线高于轮对限位处的轮心高度 12mm,以保证顶尖挑起轮对时能使轮对脱离顶出缸支撑。顶出缸安装时与两伸套压装缸同轴线,利用油缸活塞杆头上端连接的 V 形块举升轮对。轮对轴向锁紧器用于压装过程存在两端压力不平衡时,限制轮对的轴向游动,保证压装质量。压装机采用两套独立的液压机构,伸套定位、压装、顶轮、送轮、落轮等动作由控制台通过电磁阀控制液压缸来完成,可以实现轮对两端同时自动压装轴承、任一端单独自动压装轴承、分工步手动操作完成压装动作。 万贤杞分析了原列车轮对轴承压装机液压系统设计中的不足之处,为了满足列车提速后运行的可靠性要求,对原设计方案进 行技术性改造,设计了新型轮对轴承压装机液压系统。万贤杞认为原列车轮对轴承压装液压系统有一定的长处,比如:原来的设计采用 2 台压装机对称布置同时启动,液压系统由送轮对回路,托轮对回路,压装回路和压力控制回路等组成。利用锻模件组织结构致密,纤维呈线性分布的理想组织结构状态,选用中心孔定位压装轮对轴承的安装方式,显示了原来的设计者光辉的智慧亮点。但是其中也有一些缺点毛病可圈可点,如:原轴承压装采用 2 台压装机对称安装,设备重复复制;不经济的效益还体现在顶轮对压装轴承全过程同步精度不甚高,调速难度大,同步精度干扰因素甚 多;过多地使用压力继电器而没有防止误动作的特效措施;系统从顶轮对增压的速度换接过程采用电磁阀,因电磁阀滞后造成动作不连续,又因高压腔无卸压回路而产生换向冲击,损坏元件和密封装置,造成液压元件频繁更换和维修,降低了工作效率。系统自动化程度有待提高,人机间不协调隐性心理因素存在等等缺陷。于是万贤杞对轴承压装机的液压系统进行了改造设计。它保留了原轴承压装机的结构设计优点,不改变原执行器的顶轮对缸和压装机的结构尺寸和送轮对、托轮对、顶轮对、压装轴承等工序,但是提高了液压系统的工作压力,可根据列车对轮对的结构要求,调 节轴承压装力。新型轮对轴承压装机与原压装机比较,其优点有:( 1)采用 1 台压装机取代 2 台压装机对称布置压装,由 3 个同步回路取代多缸nts动作的不协调,提高了同步运行精度,避免了人机间不协调心理隐性事故隐患,提高了可靠性、经济效益和操作环境布局;( 2)选择合理的液压回路,避免了原压装机液压回路因换向冲击而产生的元件损坏和泄漏等问题,减少了设备维修和元件更换。 柳波、聂宝安等也对铁道轮对轴承压装机进行了设计研究,他们分析了原压装机液压系统的设计不足,并提出优化改造措施。他们认为原来的压装机缺陷有以下五点:( 1) 压装力不足;( 2)轮对窜动;( 3)元件损坏严重,维护频繁,费用大,成本高;( 4)定量泵供油时,在压装加压过程中,运动速度很慢,溢流损失大,发热严重,油液黏度降低,泄漏增大,影响检测准确度;( 5)系统不能实现全过程自动化控制,存在人为因素,留下隐患。通过对原来的不足的分析,他们设计了自己的新型压装机液压系统,并作了以下的改进:( 1)加大压装力,在原结构尺寸不变的条件下,增大系统工作压力。( 2)在原来的设计基础上,增加了锁紧回路和释压 回路,并将组合式伸套压装缸改为伸缩缸,同时增加压力继电器实现全过程自动控制。通过这一系列的改造之后,其优点就凸显无疑,比如:( 1)系统实现了全过程自动控制,消除人为影响因素;( 2)采用柱塞变量泵,提高了系统工作压力以满足增大压装力的要求,同时又消除溢流损失,也符合压装机快速低压、高压慢速的工作特点;( 3)采用液压锁紧装置,使轮对锁紧,再压装,即使存在两端压力不平衡,仍可防止窜动,保证压装质量。同时落对时不脱轨,滚动方便,提高工效。锁紧装置安装在轮对内侧,且安装方便;( 4)采用高压系列阀及压力继电器,元件不过 载工作,延迟使用寿命,减少维护,降低成本。( 5)采用释压回路,减少高压时换向的冲击影响,并保护压力传感器。 1.3 研究意义: 随着国民经济的高速发展,运输行业也在不断地飞速发展,尤其是铁道运输,铁道运输是国家运输的命脉,它分布广,运输量大,为进一步发挥铁道运输的运输能力,就需要对铁道、铁路、列车不断进行技术革新,使得它能够完成更好的履行自己的职能。那么,要发展铁道技术,其中机车轮对轴承压装机的设计就显得尤为重要,压装机的液压系统更是其中的关键,不容忽视。本课题旨在前人的基础上,设计研究一套新型的机车 轮对轴承压装机液压系统,为在这一方面的研究提供理论依据。 2.本课题研究的主要内容和将要采用的研究方案、研究方法 nts2.1 研究内容: 本课题研究的主要内容有: ( 1) 轮对轴承压装机液压系统的整体设计构思; ( 2) 轮对轴承压装机液压系统的设计 2.2 研究方案: 分析原有压装机的液压系统,查找设计中的缺陷和不足; 分析原有压装机整体设计上的不足;并想办法改正; 通过分析,形成一个自己的整体设计思路; 设计压装机的液压系统; 最后,仔细查找新设计的不足和缺陷,想办法更正 3.本课题研究的重点和难点,前期已展开工作 3.1 研究的重点及难点: 本课题研究的重点及难点: 轴承压装机的液压系统部分的设计; 3.2 前期已展开的工作 : 4.完成本课题的工作方案及进度计划: 本课题的工作方案及进度计划如下: ( 1) 上学期第 16 至第 17 周:利用互联网,图书馆书籍查阅国内外与本课题相关的文献资料,并且进行整理归类,准备开题报告; ( 2)上学期第 18 至第 19 周:确定初步本课题的研究方案,撰写开题报告; ( 3)下学期第 1 至第 5 周:改进相关研究方案,进行中期的设计计算; ( 4)下学期第 7 周:中期答辩; ( 5)下学期第 8 至第 9 周:基本完成设计任务,作最后的核对计算,确保无误; ( 6)下学期第 11 周:撰写最终 15000 字以上的论文,准备最终答辩; ( 7)下学期第 15 周:毕业答辩。 nts5 指导教师意见(对课题的深度、广度及工作量的意见) 指导教师: 年 月 日 6 所在系审查意见: 系主管领导: 年 月 日 nts 参考文献 1 柳波、聂宝安 .新型铁道轮对轴承压装机设计研究 .湖南省长沙市 长沙铁道学院机 电学院工程机械研究室 .2001 年第 1 期; 2 吴地勇 .自动轮对压装机液压系统研究与开发 .合肥工业大学硕士研究论文 .2009.03; 3 张谦 .铁路货车通用轮对轴承压装装置的研究 .湖南株洲 .湖南铁路科技职业学院机电 工程系 .机械工程师 .2012 年第 3 期; 4 万贤杞 .谈新型列车轮对轴承压装机设计 .湖南省 .湖南建材高等专科学校 .液压与 气动 .2001 年第 10 期; 5 胡国良、王雪军、王小明 . 25t 轴重货车滚动轴承压装机电液控制系统设计 .江西南 昌 .华东交通大学机电工程学院 .液压与气动 .2008 年第 4 期; 6 王小明、张海、邓建明 .基于 FluidSIM-H 软件的列车轴承压装机液压传统系统设计 . 江西南昌 .华东交通大学机电工程学院 .机床与液压 .2012 年 3 月第 38 卷第 6 期; 7 刘胜荣、孙剑、杨咸启、赵磊 .铁路货车滚动轴承压装机液压系统 .安徽黄山 .黄山学 院信息工程学院 .液压与气动 .2012 年第 4 期; 8 齐志宏、聂欣然 . 铁路货车滚动轴承压装机与轴承压装质量 J. 铁道车辆 .2001.39 ( 8): 33-35; 9 曾祥荣 . 液压传动 M.北京:国防工业出版社 .1984; 10 雷天觉 . 液压工程手册 M.北京:机械工业出版社 .1996; 11 胡玉兴 . 液压传动 M.北京:中国铁道出版社 .2006; 12 曹阳、孙明道 . 浅析中国铁路货车的重载化 J.铁道车辆 .2007,8,18(3); 13 尹珊波、胡军科 .铁路货车轴承压装机液压同步控制措施 .铁道车辆 2005.9.10; 14 彭少雄、肖定峰 .货车滚动轴承压装机液压系统泄漏对压装质量的影响 .铁道车 辆 .1998.9.25; 15 The LEE Company Technical Center.LEE Technical Hydraulic Handbook. Westbrook, Connecticut.1989; 16 A.L.Hitchcox.Water Hydraulics Continues Steady Growth.Hydraulics &Pneumatics, DEC 1999:31; 17 T.Vidar.From Finite Differences to Finite Elements: A Short History of Numerical Analysis of Partial Differential Equations.Journal of Computational and Applied Mathematics.2001, 128: 154; 18 K.K.Gupta, J.L.Meek.A Brief History of the Beginning of the Finite Element Method.International Journal for Numerical Method in Engineering.1996, 39(22)37613774. nts Y. Wu (Ed.): ICHCC 2011, CCIS 163, pp. 269275, 2011. Springer-Verlag Berlin Heidelberg 2011 Case-Based Design for Hydraulic Power Circuit Chi-Man Vong, Pak-Kin Wong, Weng-Fai Ip, and Zhi-Xin Yang Faculty of Science and Technology, University of Macau, Macau cmvong,fstpkw,andyip,zxyangumac.mo Abstract. This paper describes the design and implementation of an automatic hydraulic circuit design system using case-based reasoning (CBR) as one of the successful artificial intelligence paradigms. The domain of case-based reasoning and hydraulic circuit design are briefly reviewed. Then a proposed methodology in automatic circuit design and learning with the use of CBR is described. Finally an application example has been selected to illustrate the usefulness of applying CBR in industrial hydraulic circuit design with learning. Keywords: Case-based reasoning (CBR), adaptation case, hydraulic circuit design. 1 Introduction The use of computers in engineering design has become a major trend in industry. Today, different commercial automatic computer-aided design (CAD) software is available to automate the design process in many engineering applications. However, CAD software in hydraulic system design is not as prominent as in many other areas of engineering design. This is mainly due to the complexity of hydraulic analysis and lack of agreement of the most appropriate approach to the design process. In recent years, many researches on intelligent CAD or expert systems for hydraulic circuits have been found in the literature. Most of the CAD systems are built from production rules 1 for design knowledge representation or integrated rule-based and object-oriented technology 2 for reducing the complexity in hydraulic sub-circuit and component representation. Although the approaches are effective, the acquisition and maintenance of rules are the problems facing by not only the software engineers but also the designers using the software. Moreover, static learning1is another issue of traditional rule-based systems. To resolve the problems inherited from conventional rule-based expert systems, the AI community proposed another reasoning paradigm called case-based reasoning (CBR). CBR supports learning in the way that new knowledge can be appended to the knowledge base without wider recompilation of the system. This is one of main advantages of CBR that maintenance of knowledge takes much less time. This paper studies the application of CBR in hydraulic system design and a prototype automatic hydraulic circuit design system has been developed to verify this proposed methodology. 1Whenever the rules are updated, the whole system has to be recompiled. nts270 C. Vong et al. 2 Review 2.1 Case-Based Reasoning CBR 3 is a methodology that allows discovering analogies between a current working situation and past experiences (reference cases). CBR makes direct use of past experiences to solve a new problem by recognizing its similarity with a specific known problem and by applying its solution to find a solution for the current situation. CBR has been used to develop many systems applied in a variety of domains 4, 5, 6, 7, 8, 9, 10, including manufacturing, design, law, medicine, and planning. Basically CBR is constituted with four REs 3: RETRIEVE retrieve similar past case matched against current problem REUSE reuse to solve current problem based on solution of past case REVISE revise the past solution if any contradiction occurs when applied to current problem RETAIN retain the final solution along with the problem as a case if the case is useful in the future When the user inputs a problem, the problem is interpreted and converted as a new case into the specific format of the reasoning system. Then the converted new case enters the stage of RETRIEVAL where the new case is matched against the previous cases in the case library of the reasoning system. In the retrieval stage of CBR usually a simple similarity function is employed to find the nearest neighbor for the current problem from the reference cases. The formula is listed in (1) where wiis the importance of dimension i, fiI and fiRare the values for feature fiin the input and retrieved cases, respectively. For symbolic values of f, 0 if 1 if IRIR iiiiIRiiffffff=. 211()(, ,)nIRii iIRiniiwf fEf f Ww=. (1)2.2 Hydraulic Circuit Design Hydraulic power is one of power transmission systems and control. It converts mechanical energy to hydraulic energy for producing useful work such as pressing or lifting. The main task of hydraulic power system design is circuit design. The general procedure is shown as follows: I. The circuit is designed according to the information provided by the client such as maximum operating pressure, maximum load, speed of actuator, duty cycle and application, etc. II. The sizes of the linear or rotary actuators are determined according to the maximum operating pressure, maximum load and load displacement. III. Convert the calculated actuator sizes into standard sizes. nts Case-Based Design for Hydraulic Power Circuit 271 IV. The system parameters such as hydraulic oil flow rate, pressure changeover, etc, are determined. V. The suitable actuator sub-circuits, pump and pump sub-circuit is selected based on the system parameters and the design specifications. VI. Other hydraulic components used in the circuit are finally selected. 3 Applying CBR in Industrial Hydraulic Circuit Design In section 2.2 step V, hydraulic engineers are usually accustomed to modify an existing circuit design into a new one for different situation and use. It is because hydraulic circuit design is usually similar even for different situation, so hydraulic engineers have to manually look through many existing effective circuits and then select a similar and suitable one and perform modification. The process is repetitive and tedious in the stage of retrieving, because engineers have to review the circuits one by one. However, the process of the retrieving an existing circuit and adapting it to fit better the current situation can be strongly supported by CBR. If the existing circuits are collected in a computer database (case library), and each circuit is stored along with its functional and application-specific requirements of the outputs, these parameters can serve as the case (circuit design) indexes. Whenever the hydraulic engineer wants to retrieve a past case from the case library, he just needs to input the functional and application-specific requirements, and CBR uses (1) to calculate the most similar past case. If the engineer is not satisfied with the recommended case, then the next most similar past case would be shown. This could be done because the cases are already ranked with different similarity level in the calculation of case similarity. After that, the engineer could adapt or modify the retrieved case manually by the above procedure or by applying the adaptation rules supplied by CBR. Those adaptation rules are specific production rules captured from experts or from the engineers own experience. Finally the engineer can decide if the case is good enough to store into the case library for future use. Hydraulic circuit designs differ by not only the circuit diagram but also the functional attributes along with them. For circuit adaptation, if some components are replaced, then the attributes will also be modified by inserting or deleting some of them. CBR enables structural modification of cases, so that attributes can be added or deleted accordingly. For example, an engineer retrieves an past case and performs modification on the circuit design, then the number of attributes would be changed according to, which sub-circuits are revised by adding predefined attributes or deleting unnecessary attributes in the sub-circuits. 4 Application Example The system implemented is able to recommend most similar circuit design based on the circuit specification. The working environment and front-end user interface of the circuit design system are shown in Fig. 1. The learning ability of the system is illustrated in this part with the aid of an example. Table 1 shows partial attributes of the case representation for a hydraulic sub-circuit shown in Fig. 2. nts272 C. Vong et al. Fig. 1. Working environment and front-end user interface of the circuit design system Table 1. Partial attributes of a hydraulic sub-circuit Drawing name Var_1 Max. Flow 33 L/min Max. Pressure 630 Bar Variation steps of speed 2 Variation steps of pressure 1 Whenever a past similar case is retrieved, the case is adapted in order to reuse it for current situation. However, not every case is adaptable by the system, as the adaptation rule set of any system is always incomplete. At this moment, the user intervention is necessary to compensate the inability of adaptation of the system. The users will adapt the case using his domain expertise. In order to learn the domain knowledge from the user, the operation performed by the user is recorded by means of answering questions in step. When a user wants to adapt a case, the system will ask the user which kind of operations to perform. Once the user has chosen the operation, the corresponding actions are supplied to the user to choose. In recording the operations, the system can learn from the user the adaptation knowledge. The learnt knowledge is encapsulated as a case called adaptation case because it is used to guide adaptation. Subsequently, when similar problem case arises, the system will become capable to handle the adaptation by referring to the adaptation case. nts Case-Based Design for Hydraulic Power Circuit 273 4.1 System Implementation for Learning Initially, the existing standard block drawings of hydraulic sub-circuits have been constructed along with their respective attributes such as the one listed above. In the training stage of the system, a list of preview of existing drawings is shown. The user can select a parent sub-circuit to derive a new circuit. For instance, consider the above example again. If the user changes the attribute “Max. Flow” from 33 L/min to 350 L/min, the pump component of the parent sub-circuit has to be replaced with a new one that is able to support flow rate of 350L/min. This is learnt by means of the production rule supplied by the user: if “Max. Flow” = 33L/min then use old_block else use new_block The system can keep all of these production rules to adapt the future cases. Whenever a sub-circuit has maximum flow rate greater than 33L/min, it has to select a certain pump component. Because of the change of the pressure relief valve component, a larger size pressure-relief valve symbol should be inserted in the sub-circuit as shown in Fig. 2. The change of drawing could also be done by the system integrated with AutoCAD platform. Fig. 2. An example change of components recommended by circuit design system using CBR 4.2 Design Example and Discussion of Results The input specification for an example of a 110-ton horizontal hydraulic wooden squeezing station is shown in Table 2. Owing to no standard solution in the circuit design, so design evaluation will be concentrated on the validity of the design. The results generated from the prototype circuit design system have been verified to perform in accordance with the stipulated specifications by the experts from two Changes of substitution of block drawing Changes of structure Speed variation nts274 C. Vong et al. leading hydraulic engineering companies. The major contribution of this circuit design system is the reduction of design lead time. Non-experts normally spend three or four days to finish a circuit design. The major difficulty in manual design is to find appropriate components and connection among components. It is because of the lack of universal design theory, hence finding and understanding the properties of components in a circuit is a very time-consuming task, even for experts. With CBR, many past circuits can be reused and the time for re-considering the selection of components satisfied by the circuit specification can be saved. The remaining effort for a circuit design is how to adapt an existing circuit into a new suitable one and this work is much simpler than designing a brand new circuit from scratch. Table 2. The input specifications of a 110-ton horizontal hydraulic wooden squeezing station Attribute ValueActuator group no. 1 (Ram cylinder for squeezing) Maximum loading (Ton) 100 Stroke length(mm) 300 Max. stroke speed (mm/sec) 30 Max. speed for squeezing (mm/sec) 10 Mounting method Front and rear flange No. of variation stage of the load pressure during squeezing 1 Type of control in squeezing action Position sensing Stage of the actuator speed Two Acceptable noise level 60 db Expected service life time 5 years Machine operating hours/day 12 hours/day Prime mover rated speed 1450 rpm Maximum system operating pressure 210 bar 5 Conclusions CBR is a methodology in AI that can substantially support decision-making process of human beings. The most important part of CBR is to reuse past experience in current problem so that identical parts of the current problem can be directly reused while only similar and missing parts of the problem can be solved by analogy using expert adaptation rules. This work is a new attempt of applying CBR methodology in building a hydraulic circuit design system with learning capability. The circuit design system can dramatically reduce the unnecessary time consumed for repeatedly designing similar hydraulic circuit by reusing past cases. Moreover, program recompilation is unnecessary for modification of circuit knowledge base due to the learning ability of CBR. A prototype auto
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。