


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
电子教案备课简表施教时间 _年级_班 教师_课题: 22.2.1配方法(第1课时)课时数:1教学目标A类会用开平方法解形如x2=p或(mx+n)2=p(p0)的一元二次方程。B类1、 能根据具体问题的实际意义检验结果是否合理,并对其进行取舍。C类培养学生观察思维的能力预习作业复习完全平方公式,看问题1,找出本题中的等量关系,猜想问题答案教学板块学生课堂练习单有效生成一、知识回顾:1、求出或表示出下列各数的平方根。(1)25 (2)0.04 (3)0 (4)7 (5) (6)1212、求出下列各式中的x.(1)x2=49 (2) 9 x2 =16 (3) x2=6 (4) x2=9第一题为口答题,复习平方根,旨在引出第二题,培养学生探究的兴趣。对与第2题要结合平方根的意义,看能否求取x.的值二、自主学习:1、教材问题1中由x2=25得x=5依据是什么?2、问题1中所列的方程是一元二次方程吗?有几个根?它们都符合问题的实际意义吗?为什么?3、请你总结一下问题1解方程的过程。4、在“问题1”解方程的过程中,仔细体会(2x-1)2=5与x2=25相同点是什么?结合x2=25的解法,尝试解(2x-1)2=5。5、举例说明,什么是一元二次方程的“降次”?6、观察方程x2+6x+9=2,请你把它化为与方程(2x-1)2=5相同的形式为 ;进行降次(开平方)得 ;方程的两根x1= x2= 。7、以上方程在形式和解法上有什么类似的地方,可归纳为怎样的步骤?老师点评:1、 同学们在交流中体会利用平方根的意义来解一元二次方程的方法。2、 在自学的基础上,教师要重点对问题4、及问题7点拨,帮助学生更好的理解、学习,让学生真正明白“降次”思想。3、 形如x2=a(a0)得x=即直接开平方法。师生共同交流教材归纳中x2=p或(mx+n)2=p(p0)为什么p由应用直接开平方法解形如x2=p(p0),那么x=转化为应用直接开平方法解形如(mx+n)2=p(p0),那么mx+n=,达到降次转化之目的学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程“降次”,转化为两个一元一次方程我们把这种思想称为“降次转化思想”例题学习:例:解下列方程(1)(1+x)2-2=0 (2)(2x+3)2+3=0(3)4x2-4x+1=0 (4)9(x-1)2-4=0教师最好书写一个完整的解题过程,给学生以示范作用。在直接开平方时注意符号,这是易错之处。牢牢把握通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n0)的方程课堂练习:1、(教材31练习)解下列方程:(1)2x2-8=0 (2)9x2-5=3(3)(x+6)2-9=0 (4)3(x-1)2-6=0 (5) x2-4x+4=5 (6)9x2+6x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 炎症性肠炎的护理常规
- 财务管理核心流程优化与控制
- 单词挑战赛课件
- 医药收货验收工作总结
- 未来教育发展蓝图
- 征信合规与信息安全培训
- 外科护理学第20章脓胸
- 住院患者低血糖的表现及护理
- 2025年商业写字楼智能化初步设计评估与智能化改造案例研究报告
- 基于流体动力学的储能电池热管理系统研究报告
- 铸铁闸门及启闭机安装说明及操作手册
- 过敏性休克的急救及处理流程教材课件(28张)
- 物理发泡绝缘的生产与应用课件
- 北交所评测20题及答案
- 《消防安全技术实务》课本完整版
- CLSI EP25-A 稳定性考察研究
- SJG 44-2018 深圳市公共建筑节能设计规范-高清现行
- 职工子女暑期工会爱心托管班的方案通知
- (5年高职)客户服务实务(第二版)教学课件全套电子教案汇总整本书课件最全教学教程完整版教案(最新)
- 儿科患儿及家属的沟通技巧
- 童声合唱训练讲座
评论
0/150
提交评论